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Abstract

We investigate a class of operators resulting from a quantization scheme attributed to Berezin.
These so-called Berezin—Toeplitz operators are defined on a Hilbert space of square-integrable
holomorphic sections in a line bundle over the classical phase space. As a first goal we develop
self-adjointness criteria for Berezin—Toeplitz operators defined via quadratic forms. Then, following
aconcept of Daubechies and Klauder, the semigroups generated by these operators may under certain
conditions be represented in the form of Wiener-regularized path integrals. More explicitly, the
integration is taken over Brownian motion paths in phase space in the ultra-diffusive limit. All results
are the consequence of a relation between Berezin—Toeplitz operators and Schrddinger operators
defined via certain quadratic forms. The probabilistic representation is derived in conjunction with
a version of the Feynman—Kac formula.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction
1.1. Scope of this work

The general theme in this work is the geometric formulation of Berezin—Toeplitz quan-
tization on Kahler manifolds. This quantization prescription was introduced by Berezin
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[1,2] to construct quantum models with the help of certain continuous representations in
the sense of KlaudgB-8], more specifically by using spaces of holomorphic functions
on phase space manifolds with a Kahler structure. Cahen E-dl3] subsequently cast
Berezin's construction in a manifestly coordinate-independent form by borrowing ideas
from geometric quantizatiof14—-16] In this form the quantum kinematics is encoded in

a Hilbert space of square-integrable, holomorphic sections in a holomorphic line bundle.
A Berezin—Toeplitz operatdf s on such a Hilbert space is characterized by its associated
sesquilinear form, which is obtained by multiplying the measure irLthner product of

the Hilbert space with a sufficiently regular real-valued functforThe quantization con-

text arises from interpreting this function as a classical observable that is in some sense in
correspondence witli;. Indeed, one may prove that the precise notion of a correspondence
principle applies in the case of homogeneous or compact Kéhler manifoldg, $&gor

[9,18].

A first goal in this work is to derive conditions for the validity of this quantization
procedure. More precisely, we obtain regularity conditions for possibly unbounded clas-
sical Hamiltonians ensuring that their quantum analogs are self-adjoint operators. The
discussion of these conditions develops from a rather abstract level to concrete crite-
ria in terms of the Kato class that is intrinsically determined by the underlying
geometry.

The remaining part of this work generalizes an approach to path integral quantiza-
tion proposed by Daubechies and Klaud&®—-23} see alsd24]. Superficially, it is a
phase space version of Feynman’s path integral that has been rendered mathematically
well defined by a Wiener measure regularization. However, a closer look shows that the
construction by Daubechies and Klauder can be understood as a path integral formula-
tion of Berezin—Toeplitz quantization on certain homogeneous Kahler manifolds. Indeed,
a generalization to arbitrary Kéhler manifolds has been advocated in several publica-
tions [25—-28] and carried out for the compact case by Chafle8]. The advocated
generalization is a probabilistic expression for the unitary greeip’/},cg generated
by a Berezin—Toeplitz operatdf;. More precisely, a Wiener-regularized path integral
expresses the integral kernel of the time-evolution operatBfreas the ultra-diffusive
limit of an expectation value over Brownian motion paths on the classical phase
space.

In contrast to the setting considered by Chafg%, we include the case of unbounded
Berezin—Toeplitz operators and non-compact manifolds, subject to certain technical con-
ditions. Moreover, we show that instead of the Brownian motion governed by the original
Kéahler metric as irf29], the Wiener-regularization may be realized using a conformally
rescaled metric, at the cost of adjusting the path measure with a suitable Feynman-Kac
functional. A minor difference with the original intent of Daubechies and Klauder and
its advocated generalizatiofig5—28] is that instead of unitary groups, we focus on the
probabilistic representation of semigroufes''/},-o that are generated by self-adjoint,
semibounded Berezin—Toeplitz operators. The expressiontbr is entirely geometric in
nature and opens up a wealth of analytic tools from the extensively studied background of
Brownian motion. One may expect that this probabilistic representation assumes a role in
the investigation of Berezin—Toeplitz operators similar to that of the Feynman—Kac formula
in the analysis of Schrédinger operators.
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1.2. Structure and contents

In Section 2we show that a class of coherent states is essential to the understanding
of Berezin—Toeplitz quantization. After defining Berezin—Toeplitz operators in terms of
semibounded quadratic forms, we give an abstract condition for their self-adjointness.
Section 3establishes a relationship between Berezin—Toeplitz and Schrédinger operators,
which makes standard techniques from the context of differential operators available to
formulate more concrete conditions ensuring the self-adjointness of a Berezin—Toeplitz
operator. The main topic &ection 4is the probabilistic representation of semigroups gen-
erated by self-adjoint, semibounded Berezin—Toeplitz operators. This result is called the
Daubechies—Klauder formula. It is derived from a version of the Feynman-Kac formula
for Schrédinger operators on Riemannian manifolds. Finally, we summarize the results in
Section 5and conclude with an outlook on further developments.

2. Berezin—Toeplitz quantization from a coherent state perspective

This section explains the construction of self-adjoint operators according to a quantization
scheme in the spirit of Berez[t,2]. In a geometric formulation of this scherj$e-13], the
underlying Hilbert space contains square-integrable, holomorphic sections in a holomorphic
line bundle£ with a compatible connectiolW over the classical phase spaté¢. The
correspondence between the geometry of the line bundle and the classical phase space
structure is implicit in the fundamental assumption that the symplectic foriivozan be
reconstructed as a multiple of the curvature associated with the connection.

The first part of this section describes how a family of coherent states arises naturally with
Berezin—Toeplitz quantization. Conversely, it is possible to recover some of the additional
structures that are imposed on the classical phase space from the presence of such coherent
states. The details are explained in the following exposition.

Klauder’'s concept of a continuous representaf®+8] is based on the existence of a
family of orthogonal projector§ll,}c s ONto one-dimensional subspaces of a separable
complex Hilbert spacé{, indexed by points in a topological manifold such that> 11,
is weakly continuous. If there is a measur®n M such that the integrqiM I, dm(x) =
idy provides a weakly convergent resolution of the identity mapping itien we call
each one-dimensional subspage) := I1,H a coherent state. Thus, one can think of
the manifold M as being embedded in the projective Hilbert sp&3¢, the set of all
one-dimensional subspacestofBy definition, the image of the embedding constitutes the
family of coherent states. The identification of collinear vectorglito describe a (pure)
quantum state induces additional structuresvdn

Since PH is the base manifold of a bundRe: #H \ {0} — PH, where the projectio®
maps any non-zero vector#to the one-dimensional subspace it generates, the embedding
of M pulls backthe fibers~1({x}) := P~ 1({e(x)}), x € M. To makeM the base manifold
of a complex line bundle, the missing zero vector must be inserted in every fiber and thus a
so-called tautological bundle is created with total sp@@ad projectionz. If we suppose
that the linear hull of is dense i, then the linear functionalt, : ¥ — (v, ) restricted
toy € L provides a representation ofe # as a function orC that is complex linear in
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the fibers. If M is a differentiable manifold and the mappirg— I1, is in some sense
smooth, then as subsets#f the fibers in the total spaakinherit additional features. The
scalar product, -) serves simultaneously as a Hermitian metric on both the total gpace
and the tangent spadeC. The notion of horizontal transport passes fréfrto £, which
takes a smooth curvg : R — M together with a starting poirtt(0) in 7—1(£(0)) and
produces the lifted curvein £ by moving in an infinitesimal time step éfom £(7), 7 € R,
to the orthogonal projection @f(r) onto the space(z(r + dr)). In fact, this way the norm
of a horizontally transported vector in the fiber is left invariant while its base point moves
along the curve infM. In other words, the connection on the bundle corresponding to the
horizontal transport is compatible with the Hermitian structure.

Berezin—Toeplitz quantization realizes a class of such continuous representations in a
setting that is familiar in algebraic geome{B0]. If £ is a holomorphic line bundle over
a Kahler manifold, then the curvature of the line bundle is a closed two-f8if This
two-formis up to animaginary factor assumed to be equal to the symplectic faivh dine
Hilbert space chosen by Berezin—Toeplitz quantization is the space of holomorphic sections
that are square-integrable with respect to Liouville’s measure, the maximal exterior power
ofthe curvature form. These requirements are needed to show a correspondence principle for
compactM [9,18]. Unfortunately, they also restrict the universality of Berezin—Toeplitz
guantization. Not all symplectic manifolds can be equipped with a compatible complex
structure, and even less may be obtained as the base manifold of a holomorphic line bun-
dle such that its curvature is a constant multiple of the original symplectic & In
order to provide a resolution of the identity;idaccording tofM IT, dm(x) = idy, the
measuran is chosen as a locally rescaled version of the Liouville form,[$&¢ More
generally, Berezin—Toeplitz quantization maps the classical observable represented by a
bounded real-valued functiofi : M — R to the self-adjoint operator obtained from
Ty = fM f(x)IT,dm(x). In both cases, the integral converges i_n the strong sense. The
quantization of dynamics is then realized with the unitary gréelp’/ },cgr that results
from choosingf as the generator of classical time-evolution.

2.1. Hilbert spaces of square-integrable, holomorphic sections

Definition 1. Letusassume thatacomplexline bundié M is equipped with a Hermitian
metrich = {h,}xepm ON its fibers. To be precise, for each base poirt M there is a
sesquilinear metrig, : L, x L, — C on the associated fib&r,. By convention, each, is
conjugate linear in the first argument. We will only consider finite-dimensional manifolds,
n ;= dimg M < oo. Given a measura on M we may define an inner product

(W ) = / h(y. ¢) dm )
M

for sufficiently regular sectiong and¢, whereh(y, ¢) is interpreted as the function—

hy(Y(x), ¢ (x)).

Remark 2. In the definition of the inner produdt,andm can be combined to a Hermitian
metric valued measure, hereafter denotethimyindeed, this is a more appropriate way to
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view the definition, since the redundancy of rescalinghile changingn to compensate
accordingly is manifest in the notation.

Definition 3. The linear space of sectionsAhwill be denoted ag’; (M). The subspace of
square-integrable sections on a complex line buddbeer a base manifoldA is denoted

by

L?(hm) = {yf eIr(M): /M h(y, ¥) dm < oo} ) 2)

When/L is a holomorphic line bundle, we define the generalized Bergman ipﬁap(hm)
as the space of all holomorphic sectiong.f(hm).

Remark 4. Equipped with the previously defined inner product, the sg¢em) contain-
ing all square-integrable sections becomes a Hilbert space in the usual way by identifying
sections that differ up to sets bfnrmeasure zero.

If £ is a holomorphic line bundle and, interpreted as a volume form, andare ev-
erywhere non-degenerate and smooth, then the generalized Bergmarlﬁgefm) is a
space of functions that may be identified with a Hilbert-subspad& ¢fm). An outline of
the completeness proof is givenAppendix A

It may happen thaLﬁol(hm) only contains the zero section. Therefore, results about the
dimensionality of this space are of fundamental interest. For the case of comphase

[9].

Lemma 5. Given a vectow in a fiber abovex := 7(u), the point-evaluation
Bu: Lhg(hm) — C, ¥ > hy(u, Y(x)) (3)

defines a bounded linear functionahd by the Riesz representation theorem this evaluation
can be realized as an inner produgtu) := (e, V) = 9, (1) with a sectiore, € Lﬁol(hm).

Two such sections form a kernel functibi, v) := (e,, e,) that is defined o x £ and
sesquilinear in the fibers

Proof. The detail that mostly deserves explanation is the boundednégsTid verify this,
we choose a local trivializatioh around the fiber generated by mappingz—1(U) C L,
the subset of. above an open sét to V x C, with an open balv ¢ C”" having the first
component of(u) as the center.

Given a convergent sequence of section®},cn, we use as iAppendix Athe mean
value property of the associated holomorphic function¥ @a bound the value aof,, (")
by a constant times the&2-norm of (). Since the sequence has the Cauchy property,
9. (y®) is also Cauchy, and therefore convergent.

The sesquilinearity of results from the scaling propergy, = ce, for anyc € C and
uelcl. O

Definition 6. A Schwartz kernel in a complex line bundleis a family of linear mappings
{S(x, ) 1 Ly = Li}xyem, thatis,S(x, y) is linear in vectors with base pointand has as
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its values vectors at. If S(x, y) is jointly continuous int andy, then it can be interpreted
as continuous section in the bundle® £* — M ® M, whereL* is the dual bundle
associating with each € M the space of complex linear forms @p.

Proposition 7. The Schwartz kernél given in the terminology of the preceding lemma
by K(x, y)v = e,(x) for v € 7~ 1(y) is jointly continuous inx and y. We will call K the
reproducing kernel oLﬁol(hm) because of the identity

Yo = /M K(r y)p(y) dm(y). @)

Proof. The joint continuity follows from the continuity of, in v and the uniform con-
vergence of Cauchy sequencesljﬁh,(hm). These properties may be obtained using the
definition ofe, via (3) and the argument iAppendix A

To derive(4), we consider in afirst step the adjoint m@(x, y))* : 7~1(x) — 7~ 1(y),in
the usual way defined by+— h,(K(x, y)v, u)v, independent of the choice of a normalized
vectorv € 7 1(y), |lv|| = 1. We claim that K (x, y))* = K(y, x), which means for al, v
in fibers abover andy, respectively, the equatidn (u, K(x, y)v) = h,(K(y, x)u, v) holds.
To simplify the following calculation, we assume thaandv are normalized; the general
case follows by rescaling:

hy(u, K(x, y)v) = hy(u, ey(x)) = hy(u, &,(u)u) (5)
=&,(u) = &(v) 6)

= hy(éu(v)vv v) = hy(eu ), v) (7)

= hy(K(y, x)u, v). (8)

The second step for the derivation(d) uses again a normalized vecioabovex,

Y(x) = Y = (ey, YIu = /M hy(eu(y), ¥ (y))u dm(y), 9)
Y(x) = /M hy(K(y, x)u, Y(y))u dm(y) (10)

- /M i, K, Y0 A (y) (12)

- /M K@ ypmdny). O (12)

Comment 8. One of the goals in this work is to find a formula for this kernel. In principle,
one could follow a Gram—-Schmidt orthogonalization procedure, construct an orthonormal
basis of section$n;};cy and then express the reproducing kernel as a sé&figsy) =

Yo m)hy(ni(y), -) that terminates after finite terms or converges uniformly on compact
sets inM x M. However, this procedure is too abstract to show how the geometry of
L shapes the kernel. We will therefore present an alternative strategy, expr&ssirg
probabilistic way.
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Consequence 9If hmis smooth and nowhere degenerate, then any bounded opBrator
on Lﬁol(hm) possesses a sesqui-analytic integral keBel y) that is characterized by
the equatiori, (u, B(x, y)v) = (K(-, x)u, BK(-, y)v), and the image of € Lﬁol(hm) is
expressed as

By(x) = /M B(x, »)y(y) dm(y). (13)

Proof. That B(x, y) is indeed an integral kernel results from the reproducing property
(9) and Fubini’'s theorem. The sesqui-analyticity Bifc, y) follows because the mapping
v K(-, m(v))v = e, into L2 ,(hm) is antiholomorphic. O

Remark 10. Since the right-hand side &q. (13)is defined even fory € L?(hm), any
bounded operator extends naturally via its integral kernel to dlPdfim). From this point

of view, K (x, y) is the integral kernel of an orthogonal projection operator, henceforth also
called K, that maps.?(hm) onto L2 ,(hm).

2.2. Berezin—Toeplitz operators defined via quadratic forms

In the remaining text, we assume tthaandm are smooth and non-degenerate to ensure
that LZ_,(hm) is complete.

Definition 11. Given the Hilbert spaceﬁol(hm) and a real-valued functiofi: M — R,
we consider the sesquilinear form

Ty Q(Ty) x Q(Ty) — C, (14)

(W, @) /M F)hx (Y (x), $(x)) dm(x) (15)
with form domain
Q(Ty) = {w € Lo (hm) /M | f) A (Y (x), Y(x)) dm(x) < 00}. (16)

When referring td7; as a quadratic form, it is really the functigh+— T,(3, ) that is
meant.

Definition 12. Given a real-valued, bounded functigit M — R, the form7; specified

in the preceding definition is bounded and symmetric. Therefore, it is associated with a
self-adjoint operatofl’; satisfying (v, Try) = Ty, ¥) for all ¢ € Lﬁol(hm). In the
context of generalized Bergman spaces, weXal self-adjoint Berezin—Toeplitz operator
and the functionf its symbol.

Remark 13. The original definition according to BereZih 2] and its geometric interpreta-
tion by Cahen et a[9—-13]do not refer to sesquilinear forms. Indeed, for bounded symbols
the approach chosen here offers no new insights.
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However, the use of sesquilinear forms is convenient for the construction of semibounded
Berezin—Toeplitz operators described in the remaining part of this section. The implicit goal
is to find a large class of possibly unbounded symbotkat lead to closed, semibounded
quadratic forms7; and thus yield unique self-adjoint Berezin—Toeplitz operafgrsia
the Friedrichs construction characterizedday (19) In fact, this goal leads the discussion
from abstract conditions ensuring the semiboundedne®s td a more concrete class of
admissible symbols presented in the next section.

Lemma 14. If the form 7+ belonging to the positive parf* : x — max{ f(x), 0} of a
function f : M — R is densely defined and the negative part : x — max{— f(x), 0}
can be incorporated iff ; as a formbounded perturbatiormeaning

Tr- W W) < T+ (%, ) + c2l| Yl (17)

with a relative form bound; < 1 and a constant; > 0, then7y is closed onQ(77) =
Q(Ty+) and has a lower bound € R, such that7 (v, ¥) > el

Proof. The first part of the proof is to show that the sesquilinear form belonging to a
non-negative functiory > 0 is closed, in other words, we need to show tBi{T),
equipped with the form-norrfe |7, defined by

1Wl7, = Ty ) + [WIHY? for v e Q(Ty), (18)

is complete.

Supposgy;)en is a Cauchy sequence with respect to the form-norm. Due to the esti-
mate ||y || < ll¥l7, the sequence is convergentli:ﬁol(hm), Y — . Using pointwise
convergence and Fatou’s lemma, we obtin— (|7, < liminf_llvx — ¥ill7, and
therefore the sequenceé;),cn converges with respect to the form-norm.

The remaining part of the proof is the so-called KLMN theorem[32For[33, Theorem
X.17]. It goes back to works of Katf84], Lax and Milgram[35], Lions[36] and Nelson
[37]. O

Proposition 15. If the form 7 is closed and has the greatest lower bound R, then it
belongs to a unique self-adjoint opera®y that is characterized in terms of the square-root

/Ty — c satisfying
(T —cd, Ty —c¥) +c(d,¥) = Tr (@, ¥) (19)
for all ¢ andy in the domairD(,/T; — ¢) = Q(Ty).

Proof. Again, we refer to the literatur88, Theorem VIIl.15]or [39, Theorem 5.36jor
the proof of this result which we call the Friedrichs construction. a

Remark 16. As a special case @onsequence, vhenf is a bounded functiorf; has an
integral kernelT'r(x, y) characterized by, (i, Tr(x, y)v) = (K(-, x)u, fK(-, y)v), where
u, v € L have base pointsandy, and the scalar product is takenZid(hm).
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Fory € Dmin(Ty) = {¢ € L&, (hm), fy e L2(hm)}, the identity T,y = K(f¥)
relatesT s to the traditional way of defining a Berezin—Toeplitz operator as a composition
of a multiplication operator with the orthogonal projectikinHowever, it may happen that
Dmin(Tr) does not include all oLﬁol(hm), although the operatdfr; is bounded.

A disadvantage of definingjy by a semibounded form is that in general, nothing is known
about its domain. The situation is different, if a domain of essential self-adjointness can be
identified forT ;. Such situations have been investigated in dgtéil 1]for the case of the
so-called Fock—Bargmann space.

The definition of Berezin—Toeplitz operators clearly does not rely on the validity of a
correspondence principle, and we will also not need to refer to it hereafter. Because of its
physical importance, we mention that in the special setting of holomorphic line bundles
over homogeneous or compact Kahler manifolds, the Berezin—Toeplitz operators defined
on the Hilbert spacéﬁol(hm), with m being the Liouville form associated with the bundle
curvature, are known to observe a correspondence principlg2,4&gor [9,18]. Moreover,
in the compact case the same kind of classical asymptotics can be proved for more general
almost complex manifoldgt2].

3. Self-adjoint Berezin—Toeplitz operators as monotone limits of semibounded
Schrédinger operators

The main motivation for this section is to relate Berezin—Toeplitz and Schrédinger opera-
tors. An important application concerns the transfer of well-known self-adjointness criteria
to the setting of Berezin—Toeplitz operators. In this section and the following one we derive
conditions that are more accessible than verifying the abstract form-boundedrigss of
with respect tdl's+ according to inequality17).

At first, the Riemannian structure seems to be an auxiliary element that is not needed in
the definition of Berezin—Toeplitz operators according to the prescription of the preceding
section. However, continuing the line of thought in the introductory remarks given there,
we note that due to the coherent state embedding the inner product of the Hilbert space
provides a natural metric AL, which by its invariance under scalar multiplication in the
fibers passes as Fubini—Study type me#ig, Appendix 3]to the tangent bundI&M. It
is straightforward to check that the imaginary, skew-symmetric part of the Fubini—Study
metric is closed, which make®t a Kéhler manifold. The real part of this metric can then
be used to define a Riemannian structure. In short, a Riemannian metric is present as a
consequence of the quantization prescription.

In the following, we consider Hilbert spaceﬁol(hm) of square-integrable holomorphic
sections in a holomorphic Hermitian line bundlethat has a base manifolé with a
Kéahler metric. A priori, the natural volume measureassociated with the real part of the
Kéhler metric need not be in a prequantum relati@®) with the curvature of_.

3.1. Bochner-Laplacian and its relation to the holomorphic Laplacian

Several Laplacian’s will be introduced in this section, each one is characterized by an
associated positive definite quadratic form. Later, Schrédinger operators will arise from
perturbations of these forms.
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Convention 17. By default.,M is always a/-dimensional Riemannian manifold, and when-
ever it appears in conjunction with the holomorphic line bungllé is tacitly understood
to be the base manifold, with= 2xn. The Hermitian metrié on £ and the natural volume
measuren on M are as forms assumed to be smooth and non-degenerate. The class of
smooth vector fields that are at each point real-valued differential operators on real-valued,
smooth functions is written a¥k (M). The complexified version is written agM).
Whenever a smooth vector field vanishes on all antiholomorphic functions, we write
Y € 719 andif this happens for all holomorphic ories @Y. We will not distinguish
between a Riemannian metgoon the tangent bundl& M and its sesquilinear extension
to the complexified tangent bundié" M, as usual conjugate linear in the first argument.
Similarly, the Levi-Civita connection Cov is made complex linearfén\ x T€ M, and
the divergence div is thus defined as the tracde"tby for all Y € T(M) with the sesquilin-
ear form given byy : (X, Z) — (X, CovzY). The gradient of a functioif is a vector field
denoted as grad.

With a view toLemma 19 from now on all manifolds are tacitly assumed to be pathwise
connected.

Definition 18. The operator obtained by the Friedrichs construction corresponding to the
closure of the quadratic form

ECff) = fM g(grad, grad ) dm (20)

with initial form domainC2° (M) is called the negative Dirichlet LaplaciarA on L%(m).
Supposel is a Hermitian line bundle with a compatible connect®nThe negative
Bochner—Laplaciar- A~ on L2(hm) arises via the Friedrichs construction from

EE(y, y) = / TrTMp(vy, V) dm (21)
M

defined onC27 (M), the space of smooth sections with compact support. Hereby, the trace
operation is defined as before by choosing an orthonormal bﬁﬁi§21 in eachT, M such

that TTMu(Vy, Vi) = Y41 h(VE b, VD).

Lemma 19. Every complete Riemannian manifold admits a localizing sequence of
smooth cut-off functions with a uniformly attenuated gradient bound. This mésae
is an increasing sequende;};cy Oof smooth functiong; pointwise converging to unity
n(x) / 1forall x € M, eachn; has compact suppgrand the uniform gradient bound
g(gradn,, gradn;) < C; holds for some sequend€;},cny of positive numberg; > 0
converging to zero

Proof. The construction uses a result by Greene andA¥uCorollary to Proposition 2.1]
by which one may approximate the distance from a fixed ppirt M with a smooth
function. To be precise, one obtains a smooth function’M — R such thaf|gradv|| < 1
and|u(x) — dist(x, y)| < 1 for all x € M.

For the construction of the cut-off functions, we pick a real-valued smooth function
n : R — [0, 1] that is bounded above and below by characteristic functjigng 1) <
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n < x[—2,2], €nsuring compact support in the intervald, 2]. The composition; (x) :=
n((1/2"v(x)) then defines an increasing sequence of smooth functions 1 with the
gradient bound

1 1 1
arach = 5 (53000 ) aradu(e) < 5 mas ). @2)
In addition, due to the completeness of the manifold, the support ofig&cbompact since
it is contained in the closed set1([—2/, 2/). O

Theorem 20. Ifthe Riemannian manifold1 is completethen— A is essentially self-adjoint
onC&(M). The same holds for AL with C?; (M) asadomain of essential self-adjointness

Proof. It is sufficient to show this forA%, since A can be considered as the Bochner—
Laplacian on the trivial bundlé x C with the obvious Hermitian structure. We adapt
Davies’ treatment of the Dirichlet Laplacig45, Theorem 5.2.3lh combination with the
localizing sequence of cut-off functions described in the preceding construction.
The essential self-adjointness-e\~ is by its positivity equivalent33, Theorem X.26]
to having only the zero vector in the orthogonal complemeritakZ + HCH(M).
Suppose there is a non-zero veatat (—A~L + 1) C27 (M), in other words the equation
ALy = u has aweak solutiom € L2(hm). Using the localizing sequen¢g };cy described
above, we may estimate

d
0> —lnul3 = & (rfu, u) = fM S h(Vinu, i) dn
k=1

d d

= / Z 2m Ex(n)h(u, Viu) dm + / Z n2h(Viu, Vi) dm.
Mi=1 M =1
(23)
The last term is positive and we conclude that it must be bounded by
d d
f > nPh(Veu, Viu) dm < 2 / > mlEx(pllh(u, Vi) dm (24)
Mi=1 M1

d
= Z/M Z 771|Ek(771)|\/h(1/l, u)h(Viu, Viu) dm (25)
k=1

< Z/Mmllgfadmlloo\/h(u, ) h(Viu, Vi) dm, (26)
k

where the Cauchy—Schwarz inequality has been used repeatedly. With the abbreviation

¢ = />y h(Viu, Viu), we obtain
/M cf dm < Z/M cligradn;lloov/h(u, u), (27)
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and after using the Cauchy—Schwarz inequality again,
lerll3 < 2llerll2llgradnyfloollull2. (28)

To avoid confusion)| - ||» denotes the.?-norm and the termigradn;|~ the essential
supremum of the Riemannian length of gratk) overx € M. This lastinequality involves
finite quantities on both sides, becauses a smooth function by an argument related to
Sobolev norms as idppendix B The properties of the localizing sequeneg} imply
that the right-hand side approaches zero in the limit co. Therefore, by Fatou’s lemma
EX(u, u) = 0 or Vu = 0, which is in contradiction to the assumptiofu = u £ 0. [0

Now we investigate the interplay between Riemannian and complex structuyes on

Definition 21. Suppose we pick a local section in the orthonormal frame bund!€®d M,

which means in a sufficiently small open 8etc M, we have antiholomorphic vector fields
Z1,Z2, ..., Zap2 € TOD(U) that are orthonormak(Zy, Z;) = 8. For a sectiony, the

value of the antiholomorphic trace ¥ 2.(Vy, Vi) := 3, h(V, . V; ) depends on

the metric and the connectidn not on the particular choice of orthonormal antiholomor-

phic vector fields. Therefore, we may define the negative holomorphic Laplacidh®, in

a manner analogous to the previous definitions as the operator corresponding to the closure
of the quadratic form

EOQO (Y, ) = f TrOYR(Vy, V) dm (29)
M
initially defined on sectiong in the domainCZ; (M).

Remark 22. Let g be a Riemannian metric on a complex manifgitl and Cov its Levi-
Civita connection. It is straightforward to check in local coordingBds Proposition 7.14]
that g is the real part of a Kahler metric if and only if it is compatible with the almost
complex structure/ and if Cov preserves the splitting af(M) into holomorphic and
antiholomorphic parts, that is, CeWY = J CovyY for all X, Y € Y(M).

Proposition 23. Let g be the real part of a Kahler metric on thé-dimensional base
manifold M of a holomorphic line bundl&, and assume the Bochner and holomorphic
Laplacians are defined as above. Then a Weitzenbdck-type formula relates both Laplacians

A0 _ %(AE —p) (30)

with a zeroth-order termp. Given an antiholomorphic orthonormal framézk}f/:zl of

TOD A, the termp is expressed as(x)y(x) = fol Ry, 7, ¥(x).

Proof. The first step of the proof is to identifyy A(%* and A* as differential operators
when acting on a section € C2;(M). According to the usual derivatida7] we find

d
A’CW = Z kakaw — VCoka Ekw, (31)
k=1
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and
d/2
ACYY =3 (V2 V7, — Veou, 20V (32)
k=1

Here,{Ey, \]Ek}z/:z1 is a local orthonormal frame ifi M and the antiholomorphic frame

{Z}2 is obtained viaZy = (1/v/2)(Ex + iJE) € TOD M. The derivation relies on
the compatibility of the connectioR with the Hermitian metric, the resolution of the
identityzz/zzl((-, Ev) Ex + (-, JE)JE,) = id7 A and the compatibility between the almost
complex structure/ and the Levi-Civita connection Cov. Now the claimed relationship
(30) follows from the torsion-free property of the Levi-Civita connection Cov that implies
[Zk, Zi]l = Zka — Zka = COVZka — Covz, Zk. O

Remark 24. If the curvaturer of the bundle and the Kéhler formm= (1/2)g(-, J-) arein
the prequantum relation

RX,Y = Iﬁw(X, Y) (33)

forany X, Y € (M), thenp is a constant,

d/2 d/2
/ 1 /

. d
p= l;REk,JEk =~ ,;g(Ek, Ep) = ~ (34)

3.2. Berezin—Toeplitz operators as limits of Schrodinger operators

This section shows how a Berezin—Toeplitz operator can be extended to a family of
Schrédinger operators and be reconstructed as a monotone limit of this family. A major
benefit is that the knowledge about Schrddinger operators may be used to find sufficient
conditions for the semiboundednessTf, thereby ensuring the self-adjointness of the
associated Berezin—Toeplitz operator.

Convention 25. In the following, £ is always a holomorphic Hermitian line bundle apnd
is assumed to be the real part of a Kéhler metric ondtftimensional base manifold.
The connectiolV is by default compatible with the holomorphic and Hermitian structures.

Proposition 26. If the manifoldM is completethen the spaceﬁol(hm) isin the domain of
the form-closure of(>* and can be identified as the null-spdgec L2(hm) : —AQ9)y =
0} of the holomorphic Laplaciar- A©®.

Proof. Givenyr e Lﬁol(hm), we need to construct a Cauchy sequeiagcy in Co7 (M)

which converges tgr with respect to the form-normiiyy; — ¥l g0y — 0. To this end, we
use an increasing sequence of localizing cut-off functignsM — [0, 1] observing the
uniform gradient bound syp,|lgradn; (x) || < C/2! for some constar@ > 0, as described
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in the preceding part of this section. Then by monotone convergeng¢e— | — 0, and
the remaining term in the form-norm can be estimated by

£y, mi) = /M Y (Vg Vo my) dm (35)
k

=> /Muzk(mnzh(w, V) +ImlPh(Vz ¥ Vi, )
k
+ 2R(Zi(ih (W, V7, 1)) Om (36)
c? 2
< v +/M 2" h( 5, 0, Vg, ) i
k

+2/ S 1 ZkGoh(y, Yy, )| dm.
M

(37)
Using the Cauchy—Schwarz inequality, we have
Cc? 2C
ECO g, my) < 2—2,||z//||2 + 09y, y) + > 1Y (EC (y, v M2, (38)

so by dominated convergené®® (n v — v, ;i — ) — 0. Thus, both terms in the
form-norm converge to zero. O

Definition 27. A semibounded Schrodinger operaﬁﬁ’q on L?(hm) is the self-adjoint
operator associated with the form

&5, (. ) = DEE(, ¥) + (¥ q). (39)
whereD > 0 is some coupling constant and the requirement
W, g~ V) < 185 1 (U, ¥) + 28, ) (40)

is satisfied with relative form boung, < 1 and some constaap > 0. Thus, the form
domain ofGﬁ’q is obtained from the closure Gf>. (M) N {y : (¢, gt ) < oo).

Remark 28. If in addition to the requiremer{#t0) the curvature termp of Proposition 23
is also a form-bounded perturbationS)g . then

SO Y 65 py (U ¥) = DECY (YY) + (V. gy, (41)

has the same form domain 685,4 and also defines a generalized Schrédinger operator,
0,)
hereafter referred to ﬁ) e

Theorem 29. If the assumptions é¢froposition 2&ndRemark 2&re fulfilled thenGg:})

is semibounded ard; on Lﬁol(hm) is closed and semibounded
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Proof. First we noteGg:})(l/f, ¥) = Ty, ) forany D > 0 andy € Q(T¢). Thus, we
only need to show that the restriction Gﬁg‘}) to the closed subspadg,(hm) is again a
closed and semibounded form.

To show closedness, assume a sequéngg in Lﬁol(hm) which is Cauchy with respect
to the form-norm. Then by the closednesﬁég:}) the sequence has a limite Q(Gg’})).

However, this limit is contained iﬂﬁol(hm), because the sequengg),cy also converges
with respect to the usual norm mﬁol(hm).
Semiboundedness follows from the inequality:

inf &0V < inf &0V ) (42)
yeLl?(hm) yeLl (hm
l¥l=1 lwli=1
due to the set inclusiohZ  (hm) ¢ L2(hm). O

Remark 30. As stated, the above theorem does not imply thatis densely defined.

Therefore,I'y might be self-adjoint only on a Hilbert—subspaceuﬁgl(hm).
In analogy withLemma 14 it is sufficient for the closedness and semiboundedness of

Ty when for someD > 0 the negative parf~ can be incorporated as a form-bounded
perturbation ofsg”}lr with relative form bound strictly less than one. However, this condi-

tion is not as easy to characterize in termg @fs the stronger assumption in the preceding
theorem.

Consequence 31If the assumptions of the preceding theorem hold, then the semigroup

generated byg)’}) convergesinthelimib — oo strongly to a Berezin—Toeplitz semigroup,

0,0)
lim &7y = e Ky, (43)

wherer > 0,y € L2(hm), and the orthogonal projectdr; = K’;.Kf maps onto the closure
of Q(Ty) in L2, (hm).

Proof. The limit D — oo of Gg‘}) yields a non-densely defined quadratic form
O,0) . ; (0,0)
Goo,f Y Dlinoo GD,f W, ¥), (44)

which is by inspection identical witffi;.

The monotone convergence implies then thatis closed[48] and the semibounded-
ness follows from that oﬁg”;) < Ty for someD > 0. These properties imply that the
Berezin—Toeplitz operatdf; associated witl¥; is self-adjoint on the closur@(7;) C

Lﬁol(hm). Again by the monotone convergence of forms the self-adjoint operﬂg{iﬁ
converge in the strong resolvent sefé8], which in turn implies strong convergence of
the semigroups they generss8, Theorem S.14] a
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4. Probabilistic representation of Berezin—Toeplitz semigroups

This section introduces a new element into the discussion of Berezin—Toeplitz operators,
the concept of Brownian motion on the base manitétdof the holomorphic line bundle
L. In terms of this stochastic process, one may characterize the Kato class of functions
on M. It turns out that Kato decomposable functioftead to semibounded, self-adjoint
Berezin—Toeplitz operatorB; on Lﬁol(hm), wherem is the Riemannian volume measure
on M. The final result in this section is a probabilistic expression for Berezin—Toeplitz
semigroups, referred to as the Daubechies—Klauder formula. Itis convenient that the validity
of the Daubechies—Klauder formula is expressed in terms of the Kato class associated with
Brownian motion and thus the admissibility of bundle curvature and classical Hamiltonian
in the quantization procedure and path integral formulation are intrinsically characterized
by the underlying geometry.

4.1. The Kato class and a version of the Feynman—Kac formula

We adopt the usual terminology. An almost surely continuous prdgegth values in
the Riemannian manifold is called Brownian motion with diffusion constant > 0 if
for every smooth functiop € C*°(M), the difference

t
Mt:=¢oBl—¢oBo—/DA¢oBsds (45)
0

is a real-valued continuous local martinge

A probability measure governing Brownian motion with diffusion constant 0 and
almost surely fixed starting poifBo = x will be denoted a®?. The expectation with
respect to this probability measure is writtentds

A Riemannian manifold\ is called Brownian complete if for a fixed diffusion constant
D > 0, a Brownian motiorB starting at any € M has an infinite explosion time.

Definition 32. Let M be a Brownian complete Riemannian manifold with &Afl},c o @
family of Brownian motion measures with a fixed diffusion constant 0. A real-valued
functiong : M — R belongs to the Kato clags(PP) if the following condition is satisfied:

t
lim sup [ EP[|q|(By)]ds = 0. (46)
™NOyxem Jo
Whenever this property holds only locally, which means for all prodygtg € K(PP)
with characteristic functiong 4 of compact setst in M, we writeg € Kjoc(PP).
If a real-valued functiory satisfiesgt € Kioc(PP) andg™ e K(PP) then it is called
Kato decomposable, symbolizedgas K. (PP).

Remark 33. If a function has the global or local Kato property for one choicéof 0,
then this holds for anyp) > 0. The reason to includ® in the definition is merely for the
consistency of notation.

If the Ricci curvature of a Riemannian manifold is bounded from below, then the kernel
is on compact sets up to any finite time uniformly bounded away from [2é&d6]. As a
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consequence, the local Kato property implies local integrability with respect to the volume
measurefioc(PP) C L (m).

The following lemma goes back to Kéminskii[49]. Our discussion of the Kato class
proceeds along the nice expositionfi®), Section 1.2]The sole purpose of the following
passage is to show that functions from the Kato class can be viewed as infinitesimally
form-bounded perturbations of the Dirichlet and Bochner—Laplacians.

Lemma 34. Supposé < ¢ € K(PP), andr > 0is chosen such that

t
K = supEP [ / q(B,) drj| <1, (47)
xeM 0
then
.t 1
supEP[eloa®Brd) < = (48)
xXeM 1-«

Proof. We refer to the proof ii50, Lemma 2.1]which is concerned with the special case

of Brownian motion in Euclidean space. However, the formulation given there transfers
literally without modification to the general situation on manifolds. The essential steps are
to expand the exponential, to use time-ordering and the Markov property, and to inductively
apply the assumption to obtain a geometric serias in a

Consequence 35Khasminskii's lemma implies that far € X(P?), the mapping?, given
by
0ip(x) := EP[eo 1B ()] (49)

has a bound Ollco.00 ‘= SURe M, p) =1 CrP(X)]| < e®l/(1 — k) on L™ (m) with expo-
nential growth irv. Thus{Q,};>0 is a semigroup of operators @ (m).

Proof. Again, we refer tgd50, Theorem 2.2]The idea is to split [0f] into subintervals,
to inductively use_.emma 34in conjunction with the Markov property, and to bound the
resulting expression with an exponential. O

Lemma 36. Given a non-negative functiap € (), then for anyc; > O there is a
¢2 > 0such that

/M ql¢|? dm < c1DE(g, ¢) + c2ll9l13, (50)

whenevew € Q(£). In other words functions from the Kato class act as infinitesimally
form-bounded perturbations ef DA.
Proof. The proof proceeds in two steps:

Step 1. Forg € KC(PP), the expressiorf49) defines a strongly continuous semigroup
{Q:+}s>0 Of bounded, self-adjoint operatog; on L2%(m).
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The preceding lemma together with the Jensen and Cauchy—Schwarz inequalities
establish the boundedness,

fM |EL[elo09(®)%,(B,)] |2 dm (x) (51)

< / EP[e2 5 4@ STEL[1(B,) 2 dim(x) < —— I3 (52)
M 1—«

Because of the Markovian semigroup property, it is enough to show strong conti-
nuity atz = 0. To this end, we consider

lim / EP[(/s9B)% _ 1)4(B,)] 2 dm (x), (53)

™NO J g

< lim / EP[(elo 189 _ 12EP[16(B,) [ dm (). (54)
™NO J m

< lim supEP[e?/oa/BIds _ 1 / EP[¢(B,) %] dm (x). (55)
™NO xe M

The last step involves Holder’s inequality and the elementary estifeate1)? <
e?cl — 1 for any real number € R. Using the definition of the Kato class in this
estimate shows that the limit of tHe?-norm in(53) vanishes.

Moreover, by the time reversal invariance of Brownian motion g2cis seen to
be self-adjoint, and according to the Hille—Yosida theorem, there is a semibounded,
self-adjoint generator of the semigroup. Given any> 0, we choose a suitable
constantcy such that replacing by ¢ := g/c1 — ¢2/c1 in the above procedure
yields a contraction semigroup.

Step 2. If we approximatg € KC(PP) with a sequence of semibounded functigins=
min{g, [}, then for anyp € Q(€) the generator of the contraction semigra@p
associated with the functiap gives rise to a quadratic form

! - .
lim =(¢. Qsp — d)=—DE(. ) — 21 p|1% + <¢, min {1,z+ 2} ¢> <0
NGO 1 C1 c1 c1

(56)

because- DA is essentially self-adjoint and the multiplication &yis a bounded
operator. The contractivity of the semigroup furnishes the last inequality, which in
turn yields the form-boundedness condit{®0) by monotone convergence in the
limit [ — oo. O

Proposition 37. Let £ be a Hermitian line bundle with a connection and an associated
length-preserving horizontal transpoH. Suppose the base manifald is Riemannian
and Brownian complete, equipped with a family of Brownian motion meagBf&sc u(
having a common diffusion constaft > 0. Theng € K(PP) is also a form-bounded
perturbation of the negative Bochner—Laplaciar~.
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Proof. To make contactwith the preceding lemma, wejfi L2(hm) and define a function

¢ € L2(m) with valuesg(x) := A, (¥ (x), ¥ (x)).
We may now verify the.2-boundedness of the operata@$ given by

0FY(x) = EP[eho 4B i 1y (B))] (57)

with an estimate using that horizontal transport preserves the Hermitian metric and the same
strategy as in the preceding lemma,

Jh(QF (), 0Fw() < EPfels 1B (Hg LBy, Hy H(B)] (58)
= EP[eo 1@V fng, (y(B)). ¥(B))] (59)
— EP[efo1®) ¥ ¢(B,)] = & g (). (60)

A similar estimate gives
W, QFY —¥) < (9, Qi — 9, (61)

and thus together with the preceding lemma the desired form-boundedness. a

Consequence 38Therefore, any; € K(PP) may be used to define a form-bounded
perturbation of- DA or —DA¥ in order to define a self-adjoint Schrédinger operator. One
may also use&p .+ or GED s+ as the unperturbed forms and thus extend this construction

to define a Schrddinger opera®i, , with g € K4 (PP).

Lemma 39 (Feynman—Kac formula)Let £ be a Hermitian line bundle with a connection
and a length-preserving horizontal transpdft Suppose the base manifold is Rieman-
nian and Brownian complete. Denote tythe natural volume measure owt and byP?”

a family of Brownian motion measures having a common diffusion conbtan0.

If ¢ € K+(PP), then the image of a sectiaf € L2(hm) under the semigroup‘tsf)-q

generated by the self-adjoint Schrédinger operaﬁérq has the probabilistic representation

& Shay(x) = EPfe S4B & H Ly ). )

The inverse of the stochastic horizontal transport appearing in this equation can either
be understood by appealing to localized express[6d$, i.e. one restricts to a subspace

of the probability space by introducing exit times of local coordinate patches and then
reformulates the horizontal transport in a local trivialization, or one interpr2) as a
shorthand for

he(u, € Shay(x)) = EP[e™ 1B g (Hg 1, y(B,)] (63)

with an arbitrary reference vectar € L.

Proof. The proof of formulg62) is given inAppendix C O
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Consequence 40Let £ be a holomorphic Hermitian line bundle, assume its base manifold
M is Kahler, and leg denote the real part of the K&hler metric. L{th}z/zzl denote a

local holomorphic orthonormal frame @0 . If the curvature ternp = Zz/zzl Rz, z,

determined by the connection of the line bundlés Kato decomposable, thenA” and
—A©* have the same domain and are essentially self-adjoiafpaM). If f is also Kato
decomposable, then the Feynman—Kac fornf@3 with ¢ = Dp + f gives an expression
for the Schwartz kernel of the semigroup generatedgﬁy}.

Definition 41. With the help of the distance function @, the spac€ ([0, ¢]) of contin-

uous paths ioM parameterized by an interval,[f} can be turned into a complete, separable
metric space. In this setting, one may construct a regular conditional probability measure of
PP givenB, [52, Theorem 5.3.19We denote b?;/ the Brownian bridge measure, that is

the probability measure of the Brownian motion which starBg@t x and is conditioned

to arrive atB, = y. It is understood as a regular conditional probability distributiof?0f
givenB; [53, pp. 146-15Q]

Consequence 42With the assumptions dfonsequence 4@he Feynman—Kac formula
(62) can be modified to give an expression for the integral kernel of the Schrédinger semi-

group
_1d0.9) ot ) . _
&S5 (x, y) = pp(x, YEL[e™ o(PrBI /B dr gy (64)

generated b)?é%';. Hereby, we use the unique heatkerfyeb ;}~.0 of DA, the expectation

with respect to the Brownian bridge measﬂ]’i'@*yf given above, and the inverse of the
stochastic horizontal transport is understood as a linear mappingdrdmC,.

Definition 43. In the following results, we always consider a fixed Kato decomposable
symbol f € K+ (PP). To simplify notation, we pick a reference diffusion constagt> 0
and abbreviate far > 0, v € £ the section

_509
New =€ ZDO’Cf('v (v))v (65)

obtained by keeping one end of the Schwartz kernel fixed.

Lemma 44. For anyv € £ andc > 0,the section, , is contained inL2(hm. In addition
the mapping: — 1., is strongly continuous

Proof. Due to the linearity inv, it is enough to consider a vector of length| = 1. The
L2-norm ofy,., can then be estimated by repeatedly using the Cauchy—Schwarz and Holder
inequalities:

(0,0)

—S.
7ewll2 < sup |(Me,v, Y| < sup |hr) (€ “2PoY(m(v)), v)
vely, vll=1 vel,llvl=1
yreL2(hm), |1y l2=1 yeL?(hm), ||ly2=1

(66)
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< sup  [EDo[e o PortehBId Ly gy (67)
I¥llo=1xeM
1
< sup (EPo[e=2Jo(Por+eh®)dry g Do)y (B,)||7])L/2 (68)
I¥ll2=1,xeM
_Sst
< (lle”Po2Por+2et|| o N2 p1(-, X)[loo < 00. (69)

The finiteness results from the Kato decomposability ahd f and from the boundedness
of the heat kernep, [45,46,54]

To see the strong continuity af. , in ¢, we may for simplicity assume to be again a
normalized vector and consider two non-negative coupling constants’. If ¢ € L?(hm)
also has thé.2-norm||y/|» = 1, then we may estimate

|(nc,v — N vy 2]
D, et -l ’
— |En(?;)[(e Jo(Dop+eh(B df _ o= fo (Doptc 'f)(B’)dt)hBl(HB,lvv v(B))]|

< (B2 [1hg, (v, ¥(B1) 22
x(Ef(‘L)[(e‘ Jo (Dop+eh B dr _ o fol(Do,O+c’f)(B,)dt)2])1/2 (70)

< (B2, e, (4(B), ¥(BL))M2
2 (o Br1e0®2 _ e o

Taking the supremum ove, |||» = 1 on both sides together with tHeé?-contraction
property of the unperturbed heat semigroup generateddgay” yields

17cv — nc’,v”Z = sup |(New — el s ™
yeL2(hm), [[¥]2=1
1 1 ,
< (BP0, [(e o Dor+ehB)dh _ g I3 (Dop-c' B dry2)1/2 72)
1 _ .
< Z(E]?(%)[EZ(/O (Dop~+cof~)(Br) dt])1/2' (73)

The purpose of the last estimate is to show that with the help of somedgardeminated
convergence applies {@2)in the limit¢’ — c. O

Theorem 45(Daubechies—Klauder formula).et £ be a holomorphic line bundle with a
Hermitian metrickz, suppose its base manifaldl is equipped with a Kéhler metridenote

its real part byg and the natural volume measure by bet M be Riemannian complete
with Ricci curvature bounded belgte ensure Brownian completeness. Let the real-valued
functionf : M — R be Kato decomposable with respect to the Brownian motion measure
PP on M, where the diffusion constari® > 0 is arbitrary. In addition suppose the
curvature termp defined inProposition 23s also Kato decomposable. To include the case
whenTy is not densely defingd/e denote b s the orthogonal projector onto the closure

of the form domairQ(77) in L ,(hm).
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With these assumptions the integral kernel of the Berezin—Toeplitz semigroup
(e tTr Kr}i=0isfort > O and almost every, y € M given by the probabilistic expression

. . _rt B y _
(e_tTf Kf)(x, y) — Dlinoo pD,l(x7 y)ExD’,}l:[e fo(DP(B;)'f’f(Br)) drHB’:tl.]' (74)

In particular, we obtain the reproducing kerndd of Lﬁol(hm) as a special case of this
formula whenf = 0.

Proof. Inconjunctionwith the specific use of the Feynman—Kac formuzansequence 42
it is equivalent to show that the integral kernel of the Berezin—Toeplitz semigrdﬂp[éf
on Lﬁol(hm) is forz > 0 and almost every, y € M given by the pointwise limit

@Ky = Jm D7 ), (75)

Wheresg") is the semibounded Schrédinger operator defineBdpy(41)

We borrow the strategy of Bodmann et f85] and accommodate it to the manifold
situation and the case of unboundgdThe key to the present generalization is the use of
monotone form convergence.

We have to show that far, v € £ at almost all base points y € M the equation

0,e)
lim G, &7 (x, y)v) = (eu, €T/ K pey) (76)
— 00

holds, which byConsequenceéharacterizes the integral kernel of & Ky on Lﬁol(hm) -
L2(hm).

To see(76), we use the semigroup property and express the integral kernel with some
choice of Dg > 0 in a scalar product

S|

—t. 0.9) 0,e
hyx(u, € "7 (x, y)v) = (Npy/D,us eXFx_tS(D,%DO,(D,ZDO)f/D)nDo/D,v) (77)

that converges in the limib — oo to
lim 7 (u, &% (. Y)) = (o.u- € T K 170.). (78)
D— o0 X

This can be deduced from the strong continuity;@f, in ¢ for anyw € £ and the strong
convergence stated@onsequence 3bgether with the uniform-boundedness (according to
the Ba_ngch—Stemhaus theorem) of the operatorsaﬁf’_';l)oﬁ(D_ZDOWD) in D > 2Dy.

To finish the proof, we observe that we may replagg andno , by e, ande, on the
right-hand side 0(r78)because‘(fexp(—S§§C;f()))(-, w) = K¢ (-, w) foralmosteveryw € M.
Thus we obtain (76) and hence the desired integral kernel fa-eXp) K ¢ on Lﬁol(hm)
that is, in addition, continuous inandy and therefore coincides with the right-hand side
of (76). The continuity of(78)is guaranteed by the continuity of the heat kernel derived in
Appendix B and withK ¢ exp(—SgJ(;fg) = K it can be checked that it indeed constitutes
an integral kernel. O
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Remark 46. The probabilistic representation of Berezin—Toeplitz semigroups according
to formula(74) has also been called a Wiener-regularized path integral, because it gives
meaning to similar, non-rigorous versions of such path integrals.

With particular choices of holomorphic line bundles over homogeneous Kéhler manifolds
related to Lie group representatiofi®], formula(74) yields an analog of the situations
considered by Daubechies et[@0,24] The particular Lie groups in consideration are the
Heisenberg—Weyl group, SU(2) and the affine group. In each of these cases, the complex
dimension of the manifold\U is n = 1, the Riemannian metrig is the real part of the
Ké&hler metric, and the imaginary, skew-symmetric part is in the prequantum re{agpn
with the curvature of the line bundle. For an explicit result that does not satisfy this relation,
see the treatment [B5] or [57]. The result given there differs from that of Daubechies and
Klauder[20] by a conformal rescaling of the Kéhler metric on the base manifold.

It is worth pointing out that with a suitable analyticity argument, one could obtain from
formula (75) the probabilistic expression for the Schwartz kernel of the unitary group
e T/ which was a primary motivation f§i.9-24] The case of boundefimay be treated
according td55]. The techniques if58] appear suitable for a generalizationfta C(PP),
but the Kato decomposable case seems to require an additional effort.

5. Summary and outlook

In this work, we have studied a coordinate-independent quantization prescription in the
spirit of Berezin and its representation by Wiener-regularized path integrals according to
an idea of Daubechies and Klauder. In the present version, these path integrals express
semigroups that are generated by self-adjoint semibounded Berezin—Toeplitz operators on
a generalized Bergman space.

The first results concerned conditions that guarantee self-adjointness and semibound-
edness of Berezin—Toeplitz operators. The use of quadratic forms provided a convenient
framework to develop such conditions, which in the cours8exftions 2—4&volved from
rather abstract form-boundedness to the more concrete requirement in terms of the Kato
class. The Dirichlet Laplacian provided a natural geometric characterization of this class.
Besides the Kato class, the holomorphic Laplacian proved central to our implementation of
the concept by Daubechies and Klauder on Kahler manifolds. More specifically, we consid-
ered perturbations of the holomorphic Laplacian in conjunction with a limiting procedure
and the Feynman—Kac formula to construct Wiener-regularized path integrals, a probabilis-
tic representation of the Schwartz kernel for the semigroup generated by a Berezin—Toeplitz
operator. One implication of this construction was that the reproducing kernel of a space
of holomorphic, square-integrable sections in a holomorphic Hermitian line bundle over a
Kéahler manifold could be expressed in purely geometric terms.

The fundamental idea behind all those results was the relation between Berezin—Toeplitz
operators and Schrodinger operators, which enabled us to transfer all the relevant analytic
and probabilistic techniques.

As to further developments, one may ask whether Wiener-regularized path integrals can
also be found for continuous representations without underlying complex structures. A
step in this direction this has been pointed out by Alicki and KlaJ@bt with the use
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of Dirac operators and sgistructures. Indeed, the completeness argument for the Hilbert
space inAppendix Acould be applied to a space of merely harmonic functions, since all
that is required are mean value and continuity properties. In addition, the context of Dirac
operators may provide enough analytic tools to replace techniques that so far relied on the
presence of complex structures. Another ramification is the concept of path transformations,
well known in the study of Schrodinger operat{8]. Indeed, one may use an invariance
property of Brownian motion under harmonic morphisms to relate the resolvents of different
Berezin—Toeplitz operators to one anotf&d]. Finally, it may be worthwhile to study the

use of Wiener-regularized path integrals to extend the correspondence principle from the
compact Kahler case to non-compact manifolds. Probabilistic representations have often
been useful to bridge between different function spaces. In this case, a suitable procedure
of approximating non-compact Kahler manifolds by compact ones in the path integral
representation could help enlarging the validity of the correspondence principle.
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Appendix A. Completeness of the generalized Bergman space

In this part of the appendix, we show that the spaces of holomorphic, square-integrable
sectionsLﬁol(hm) we consider are indeed Hilbert spaces. The main part is a localization
argument that reduces the setting to that of the space of square-integrable holomorphic
functions on the unit ball as studied by Bergnjéq].

Let d®'z denote the Lebesgue measure@h We recall that the open balt(x, r) :=
{y e C": Y37 1 lv — x| < r?} centered ak € C" with radiusr > 0 has the volume
Jon XBer) (2) @'z = 7"r?1 /n!, wheren! := 1. 2 .- n denotes the factorial of.

Lemma A.1. The inner product spacéﬁol(B(O, 1)) of holomorphic functions that are
square-integrable with respect to the Lebesgue measur®(Onl) is complete in the
norm-topology induced by the usugd-inner product

Proof. Let (f;) en be a Cauchy sequence lrﬁO,(B(O, 1)). First we show uniform con-
vergence on all compact sefsinside B(0, 1). For any such sef, we can find a non-zero
safety radius- > 0 smaller than the distance froéto the boundary of3(0, 1). Using

the mean value property for holomorphic functions, we can express the difference of two
function values at a point € C as the difference between the averages of the two functions,
each computed for a disk centeredvaiThen Jensen’s inequality in conjunction with the
convexity of the square-modulus functiom> |c|? onC yields

| 2
Sugfj(x)—fk(x)|2=( - ) sup |fi(z) — fi()|?d?'z, (A1)

Ty xeC J B(x,r)



152 B.G. Bodmann/Journal of Geometry and Physics 47 (2003) 128-160

2
supfi(x) — fi@? < ( ”2n> f 1£(2) — fe(2)]?d?'z
xeC T B(x,r)

| 2
= (#) 1~ fil. (A2)

The right-hand side can be made arbitrarily small and thus the sequgngey converges
uniformly onC. By a standard argument in complex analysis, we conclude that the pointwise
limit defines a holomorphic functiofi : f(z) = lim ;. fj(z) in B(0, 1).

That the convergencg; — f is also in the sense of the?-norm follows from the
Cauchy property of the sequence ant fxll2 < liminf ;_, | f; — fkll2 due to pointwise
convergence and Fatou’s lemma. |

Theorem A.2. Let £ be a holomorphic line bundle with the complexdimensional base
manifold M. Suppose the fibers @f are equipped with a Hermitian metricand M pos-
sesses a volume form, both forms non-degenerate and smooth. Then the spﬁoqehm)
of holomorphi¢ square-integrable sections ififorms a Hilbert space

Proof. To begin with, we choose an atlas of local trivializatig@g ;<; and corresponding
reference sections. That s, in each chart domali; of the underlying atlas coverinyt,

we choose; such that the compositic§y o s; has the constant value one in the second
component. Choosing; : 7~1(U;) — V; x C determiness;. Thus, we can identify
each sectiory with a set of functiondy; : U; — C} e that satisfyy|y, = s, via
multiplication in the fibers.

Similarly, as in the preceding completeness proof, it is enough to show that any given
Cauchy sequence converges pointwise to a holomorphic section, which is a holomorphic
representative of the limit in the?-sense.

To this end, we note that with the local reference sections, the Cauchy sequéhgey
is represented by a sequence of holomorphic functidfs U; — C. The image measure
of m underachag; : U; — V; C C" has a density with respect to the Lebesgue measure
onV;, dm(z) =m;(z) d?z.

Suppose we have chosen local trivializatignsvith the range of each underlying chart
¢; being a ball of radiug; centered at the origin. The non-degeneracy and smoothness
of » andm imply that for eachU;, there is a strictly positive lower bound @ ¢; <
m(z). We deduce tha{wy)}leN is a Cauchy sequence of holomorphic functions in the
conventional Bergman spadq%ol(vj,ej d?'z). According to the preceding lemma, the
sequence converges pointwise to a holomorphic function. The limits obtained on each
V; can then be recombined with the help of the reference sectipts give a global,
holomorphic section. This limit section is the holomorphic representative that coincides
almost everywhere with the limit of the Cauchy sequefEg;cx taken inL2(hm). a

Appendix B. Smoothness of heat kernels

The crucial idea used in the construction of the heat kernel is that the indeX of a
Sobolev spac#/"2(R?) controls the regularity properties of its functions.
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To simplify the notation, we introduce a customafydimensional multi-indexj =
(j1, j2 - - ., ja) With non-negative componenys, jo, ..., js € Z™ and define its degree
by [l == Y4_1 ji. Fork = (ka, k2, ..., kg) € R, we abbreviaté/ := k{*k2, ..., k4.

Definition B.1. The Sobolev spac#"2(R¢) with v € N consists of square-integrable
functions f : RY — C having Fourier transformg : k — fRd e "X f(x) d?x that render

the Sobolev normyg, | £(k)[(1 + k2)” d’k finite. Equipped with this normiy>2(R%) is
complete.

Lemma B.2. Given a fixed maximal degrée< | < v — d/2, the linear functionals
d'k
(2m)d

8 fr—>/ Kk €% 7 (k) (B.1)
R4

with x € R? and |j| < [ are uniformly bounded of¥"2(R%). Moreover in this case

any functionf € W"2(R%) has ani-times continuously differentiable representative>

80 (f).
Proof. This statement is a rearrangement of Cycon g64l. Theorem 12.29] O

Proposition B.3. Given a complex line bundéwith a Riemannian base manifald, the
semigroup generated by the self-adjoint Bochner—Laplaeiat as defined if21) has
a Schwartz kerne{lpf(x, ¥ Ly = Ly}>0.x,yem that is smooth in the parametersx
andy.

Proof. As afirst step, we establish properties of point-evaluation functionals on Sobolev-
type spaces of sections ih

A sectiono = ojs; with compact support in the domain of a chast: U; — V; C RY

can be identified witla ; o ¢JT1, and because of its compact support canonically extends by
zero on the remaining part & . Due to the smoothness and non-degeneracy of the metric,
its eigenvalues obtain a maximum and a non-zero minimum on the supportbérefore,
A~ acts locally as a uniformly elliptic operator and allows estimatingl — A%)o) from
above and below by multiples of the Sobolev-norm of the funatipim WL2(R4). By an
inductive procedure, the same technique gives estimate®,fat — A%)Yo) in terms of
norms inW"2(R<). From now on, we refer to the Sobolev-type space of secijonaving
the finite normi|[y ||| := [|(1 — AL)"2y || asWi2(M).

In analogy to the Sobolev spaces &f, the linear functionab, : ¥ — h,(u, ¥(x))
evaluating sections at= m(u) is for sufficiently largeo bounded irWZZ(M). Atfirst, the
bound is only valid on the closed subspace of seciiowith support in a sufficiently small
compact seCC containingx. However, the sections in the orthogonal complement of the
subspace vanish anand thus the bound &, passes unchanged to the wholé/bl‘fz(/\/l)

[62]. By a similar localization argument and the preceding lemina; 9, is seen to be
smooth, and so are all the sectiansn WZZ(M).

The next step of the proof makes use of these smoothness properties to construct the heat
kernel.
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In the spectral representation we see that for fixed N andz > 0, the operators
(1— ALyv/2 &A" are uniformlyire > 7o bounded or.2(hm). In consequence, the semigroup
¢2” is bounded as a mapping frof?(hm) into all Sobolev-type spacés”2(M), and
choosing a sufficiently large proves that the functionat — ¥, (e’Aﬁ ) is bounded and
linear iny € L2(hm). By the Riesz representation theorem and due to the linearity of
u — ¥, in the fibers, there is a vectay(-, 7(u))u in L2(hm) such thatz?u(emﬁx/r) =
(q:(-, mw))u, ) for all Y € L2(hm). By the smoothness of — (g;(-, 7(u))u, ) and a
uniform-boundedness argument, the map- ¢, (-, 7(u))u is smooth in the strong sense.

In addition, the map > ¢;(-, 7(u))u is also smooth, becaugt — AL)"/2 " is real
analytic int > 0. In the last step, we define a smooth kerpl,%{x, y) by

hy(u, pf (), w(W))v) = (quy2(-, 1), giy2(-, T(W))v), (B.2)

and claim that it is a Schwartz kernel fdfé. Using the definitior(B.2), the equation

/M | 0. P Do) () () = (@212, g2 2 (B.3)

follows for sectiong), o € C27(M). The self-adjointness and boundedness /& then
completes the proof. O

Appendix C. A version of the Feynman—Kac formula for perturbations of the
Bochner—Laplacian

This appendix is concerned with a proof of form(#&). The strategy followed here is a
combination of ideas as presented by Sirf&@) Chapter V] Bismut[64, Chapter IX] and
Wittich [58]. The core portion of the proof is a version ob’& formula for sections in line
bundles, which will be derived first. The remaining part is an approximation argument.

We will use the same notation as in the main text,(sés a Hermitian line bundle
with a connectionv and an associated metric-preserving horizontal transgorThe
d-dimensional base manifoléit is complete with respect to the topology induced by a Rie-
mannian metric. As usual, the Brownian motionwith the diffusion constand > 0 and
the starting poink is denoted by, and the underlying probability measureB¥. More-
over, M is assumed to be Brownian complete and its Ricci curvature bounded from below.

The Bochner—Laplacian is denoted by. An additive perturbation te-DAZ by a
functionq as discussed iDefinition 27results in the Schrodinger opera@g,q. At first,
we focus on the unperturbed case.

Lemma C.1. Given a smooth sectiof in £, then fort > 0
d ot
Hg (B = ¥(Bo) + ) _ /O Hg Vi, ¥(B,)(E}. 3B), (C.1)
k=1

relates the horizontal transport and the connection in a Stratonovich-integral equation. As
usual the right-hand side is invariant with respect to the particular choice of the section
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{Ek}zzl in a local orthonormal frame bundle. The brackéts.) denote a dual pairing
here with the one-fornt; = g(Ex., -).

Proof. By localization[51], it suffices to check this on a stochastic interval [ where
T is the exit time oB from the chart domai®/; containing the starting poify. The proof
is accomplished using a local formulation of horizontal transport. To this end, we select
a local trivialization£; and reference sectiay around theBo and associate with each
sectiony the representing functiot; satisfyingy,|y; = ¥s;. The so-called connection
one-form determined by has a local representatiwg that satisfie& x (s ;) = (X () —
iaj(X)y;)s; for all smoothyr and vector fieldX € T(M).

To simplify the notation, we define semimartingal€andZ on [0, ] by

Y, :=¥;B) and Z, :=e ol B) (C.2)

and use the shorthar&W* = (E?, §B), which represents the components of a Brownian
motionW in R that is restricted to the stochastic interval. In conjunction with Stratonovich
stochastic integrals, an integration by parts rule applies,

t t
ZY:— Yo = / Z.8Y, + / Y,8Z,, (C.3)
0 0

d t d t
ZY, - Yo=Y fo 2, BB WE —i Y fo Z,Y,0;(E)B)OWE,  (C.4)
k=1 k=1

d ot
ZY,—Yo=)_ /0 Z,(Ex(y)) — i j(Ex) ) (B,) 3W, (C.5)
k=1

and after reinserting the definitions¥fandZ, we obtain an identity which, together with
the localized expression for reverse horizontal transport, shows that both skigs(Gf.1)
are the same scalars multiplyingBo). O

Proposition C.2. With the same notation as in the preceding lemanersion of the s
formula in fiber bundles is expressed as

d t t
Hy1v(B) = ¥(Bo) + ) / Hg 'V, y(B,) dW® + / Hg DA™ y(B,) dr.
' k=1 0 ’ 0 ’
(C.6)

Proof. As the first step of the proof, we repeat the calculation in the preceding lemma, with
Y, replaced byr* := (Ex(y)) — ie;j(Ex)¥;)(B,), which yields

d t
ZYF=Yo =) /0 Z,(E/(Ex(¥})) — (Cov, E)Yr; — i Ey(etj(Ex))
=1

—iatj(Covy Ex) — iaj(ED(Ex (W) — iaj(Ex)y;)(B) WL (C.7)
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The covariant derivative of the frame vectors enters because those are not horizontally
transported along.

Now we converEgs. (C.5) and (C.7p Ito differentials and insert the stochastic integral
expression foZY* into the cross variation emerging frof. (C.5)

d d
1
ZY, —Yo= § /0 Z.YFSWk + > § [ZY*, WH],, (C.8)
k=1 k=1

ZY,—Yo = Zfz Y5 dwk 4 2 Z/ Z(E/(Ex(¥)))

kl 1
—(Cov E\)Yrj —iEj(aj(Ey))
—iaj(Cov Ep)(By) — i (ENYy) d[W', Wi]. (C.9)

After contracting the summation indices with the cross variatidh, W], = 2Dsyr, a
similar identification as in the preceding lemma and the differential operator expression
obtained forA“ proves formulgC.6). a

Consequence C.3If ¥ € L2(hm) andEDL[e] denotes the expectation with respect to the
Brownian motion starting at € M, then fors > 0 the semigroup generated BAZ can
be represented as

€22y () = EP[Hg Ly (B))]. (C.10)

Proof. First, we assumé € C2;(M) and abbreviate the expectation valBé Y(x) ==

Ey(Hg txp(B,)]. Since HB; preserves the Hermitian metrig eacth,, is seen to be a
bounded operator. Moreover, by the time reversal invariance of Brownian motion it is
self-adjoint. Finally, the famil){Pf) }+>0 forms a semigroup due to the Markov property

Pé,tJrsw(x) = E)];)[ B, ,_;,_Yl/f(BtJrs)] (C.11)

P55V () = EP[Hg {EL [Hg 1w (B)]] = Pf ,(Ph ¥)(x) (C.12)

valid fors, r > 0. To verify that both sides ¢€.10)are identical, we note that the generators
agree ony € C22 (M), becauseP,‘j Y satisfies the same integral equation 'é’§éw,

P (x) = EP[Hg 1(B)], (C.13)

P55 y(x) =EP [lp(Bo)Jr /O Hg -DA 4y (By) dsi|, (C.14)
t

P§ W(x) = ¥(x) + /0 P55 DA (x) ds. (C.15)

By the definition of Pf; ,, the semigroup can be defined on #lle L?(hm). Therefore,

its generator defines a self-adjoint extensiombaf~ lcse (M), but this is necessarilpA~L,
because the latter is essentially self—adjomtlg’@(/\/l) O
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Theorem C.4. If the assumptions listed at the beginning of this appendix are satigfied

L2(hm), andg € K + £(PP), then the semigroup‘tsﬁq generated by the Schrodinger
operatorSf,, q has the probabilistic representation

eftSf),q Y(x) = Ef[e_ fé q(Bs) dSHB—}w.(Bt)]’ (C16)

valid for m-almost every € M.

Proof. First, we suppose is continuousy is a smooth section, and both are bounded.
Then, along the lines f.6) and with the integration by parts rule,

t d 1 r
e 1B -1y (B,) = y(Bo) + E / e oaBIE g1y, y(B,) AW
. b ,
k=1

t r
+ /0 e Joa®) S Hg H(DA®Y — qy)(B,) dr. (C.17)

Sinceg is bounded, the modification of the heat semigroup defined by insé@iag)in the
expectation value ¢C.10)has as its generator a self-adjoint extensiooh £ —g) lcse My

Again, by essential self-adjointness, this is seen to be the diffeFeﬂggaq = DAL —yg.

In the last step, we approximate the general gase. (PP) by truncation. We define
the net{q! } of bounded functions

x > ¢h(x) := min{max{g(x), —k}, I} (C.18)
indexed byk, I € N. Truncatingg € K+ (PP) in this manner gives
—tsf t
e Phy(x) = EP[e Jodk(Bods Hg 'y (B))] (C.19)

valid for m-almost everyx by the above argument. Now, by monotone form convergence
we obtain strong convergence on the left when consecutively fissbo and therk — oo,
whereas on the right dominated convergence applies to both limits, because

EP[elo ™ ®) g (4(B,), $(B)] < oo (C.20)
since the negative pagt- € IC(PP) andx — h, (¥ (x), ¥(x)) arem-integrable. O
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