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Abstract

We investigate a class of operators resulting from a quantization scheme attributed to Berezin.
These so-called Berezin–Toeplitz operators are defined on a Hilbert space of square-integrable
holomorphic sections in a line bundle over the classical phase space. As a first goal we develop
self-adjointness criteria for Berezin–Toeplitz operators defined via quadratic forms. Then, following
a concept of Daubechies and Klauder, the semigroups generated by these operators may under certain
conditions be represented in the form of Wiener-regularized path integrals. More explicitly, the
integration is taken over Brownian motion paths in phase space in the ultra-diffusive limit. All results
are the consequence of a relation between Berezin–Toeplitz operators and Schrödinger operators
defined via certain quadratic forms. The probabilistic representation is derived in conjunction with
a version of the Feynman–Kac formula.
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1. Introduction

1.1. Scope of this work

The general theme in this work is the geometric formulation of Berezin–Toeplitz quan-
tization on Kähler manifolds. This quantization prescription was introduced by Berezin
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[1,2] to construct quantum models with the help of certain continuous representations in
the sense of Klauder[3–8], more specifically by using spaces of holomorphic functions
on phase space manifolds with a Kähler structure. Cahen et al.[9–13] subsequently cast
Berezin’s construction in a manifestly coordinate-independent form by borrowing ideas
from geometric quantization[14–16]. In this form the quantum kinematics is encoded in
a Hilbert space of square-integrable, holomorphic sections in a holomorphic line bundle.
A Berezin–Toeplitz operatorTf on such a Hilbert space is characterized by its associated
sesquilinear form, which is obtained by multiplying the measure in theL2-inner product of
the Hilbert space with a sufficiently regular real-valued functionf . The quantization con-
text arises from interpreting this function as a classical observable that is in some sense in
correspondence withTf . Indeed, one may prove that the precise notion of a correspondence
principle applies in the case of homogeneous or compact Kähler manifolds, see[2,17] or
[9,18].

A first goal in this work is to derive conditions for the validity of this quantization
procedure. More precisely, we obtain regularity conditions for possibly unbounded clas-
sical Hamiltonians ensuring that their quantum analogs are self-adjoint operators. The
discussion of these conditions develops from a rather abstract level to concrete crite-
ria in terms of the Kato class that is intrinsically determined by the underlying
geometry.

The remaining part of this work generalizes an approach to path integral quantiza-
tion proposed by Daubechies and Klauder[19–23]; see also[24]. Superficially, it is a
phase space version of Feynman’s path integral that has been rendered mathematically
well defined by a Wiener measure regularization. However, a closer look shows that the
construction by Daubechies and Klauder can be understood as a path integral formula-
tion of Berezin–Toeplitz quantization on certain homogeneous Kähler manifolds. Indeed,
a generalization to arbitrary Kähler manifolds has been advocated in several publica-
tions [25–28] and carried out for the compact case by Charles[29]. The advocated
generalization is a probabilistic expression for the unitary group{e−itTf }t∈R generated
by a Berezin–Toeplitz operatorTf . More precisely, a Wiener-regularized path integral
expresses the integral kernel of the time-evolution operator e−itTf as the ultra-diffusive
limit of an expectation value over Brownian motion paths on the classical phase
space.

In contrast to the setting considered by Charles[29], we include the case of unbounded
Berezin–Toeplitz operators and non-compact manifolds, subject to certain technical con-
ditions. Moreover, we show that instead of the Brownian motion governed by the original
Kähler metric as in[29], the Wiener-regularization may be realized using a conformally
rescaled metric, at the cost of adjusting the path measure with a suitable Feynman–Kac
functional. A minor difference with the original intent of Daubechies and Klauder and
its advocated generalizations[25–28] is that instead of unitary groups, we focus on the
probabilistic representation of semigroups{e−tTf }t≥0 that are generated by self-adjoint,
semibounded Berezin–Toeplitz operators. The expression for e−tTf is entirely geometric in
nature and opens up a wealth of analytic tools from the extensively studied background of
Brownian motion. One may expect that this probabilistic representation assumes a role in
the investigation of Berezin–Toeplitz operators similar to that of the Feynman–Kac formula
in the analysis of Schrödinger operators.
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1.2. Structure and contents

In Section 2we show that a class of coherent states is essential to the understanding
of Berezin–Toeplitz quantization. After defining Berezin–Toeplitz operators in terms of
semibounded quadratic forms, we give an abstract condition for their self-adjointness.
Section 3establishes a relationship between Berezin–Toeplitz and Schrödinger operators,
which makes standard techniques from the context of differential operators available to
formulate more concrete conditions ensuring the self-adjointness of a Berezin–Toeplitz
operator. The main topic ofSection 4is the probabilistic representation of semigroups gen-
erated by self-adjoint, semibounded Berezin–Toeplitz operators. This result is called the
Daubechies–Klauder formula. It is derived from a version of the Feynman–Kac formula
for Schrödinger operators on Riemannian manifolds. Finally, we summarize the results in
Section 5and conclude with an outlook on further developments.

2. Berezin–Toeplitz quantization from a coherent state perspective

This section explains the construction of self-adjoint operators according to a quantization
scheme in the spirit of Berezin[1,2]. In a geometric formulation of this scheme[9–13], the
underlying Hilbert space contains square-integrable, holomorphic sections in a holomorphic
line bundleL with a compatible connection∇ over the classical phase spaceM. The
correspondence between the geometry of the line bundle and the classical phase space
structure is implicit in the fundamental assumption that the symplectic form onM can be
reconstructed as a multiple of the curvature associated with the connection.

The first part of this section describes how a family of coherent states arises naturally with
Berezin–Toeplitz quantization. Conversely, it is possible to recover some of the additional
structures that are imposed on the classical phase space from the presence of such coherent
states. The details are explained in the following exposition.

Klauder’s concept of a continuous representation[3–8] is based on the existence of a
family of orthogonal projectors{Πx}x∈M onto one-dimensional subspaces of a separable
complex Hilbert spaceH, indexed by points in a topological manifold such thatx �→ Πx
is weakly continuous. If there is a measurem onM such that the integral

∫
MΠx dm(x) =

idH provides a weakly convergent resolution of the identity mapping idH, then we call
each one-dimensional subspacee(x) := ΠxH a coherent state. Thus, one can think of
the manifoldM as being embedded in the projective Hilbert spacePH, the set of all
one-dimensional subspaces ofH. By definition, the image of the embedding constitutes the
family of coherent states. The identification of collinear vectors inH to describe a (pure)
quantum state induces additional structures onM.

SincePH is the base manifold of a bundleP : H \ {0} → PH, where the projectionP
maps any non-zero vector inH to the one-dimensional subspace it generates, the embedding
ofMpulls back the fibersπ−1({x}) := P−1({e(x)}), x ∈M. To makeM the base manifold
of a complex line bundle, the missing zero vector must be inserted in every fiber and thus a
so-called tautological bundle is created with total spaceL and projectionπ. If we suppose
that the linear hull ofL is dense inH, then the linear functionalϑv : ψ �→ (v, ψ) restricted
to ψ ∈ L provides a representation ofv ∈ H as a function onL that is complex linear in
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the fibers. IfM is a differentiable manifold and the mappingx �→ Πx is in some sense
smooth, then as subsets ofH, the fibers in the total spaceL inherit additional features. The
scalar product(·, ·) serves simultaneously as a Hermitian metric on both the total spaceL
and the tangent spaceTL. The notion of horizontal transport passes fromH to L, which
takes a smooth curveζ : R → M together with a starting point̂ζ(0) in π−1(ζ(0)) and
produces the lifted curvêζ in L by moving in an infinitesimal time step dt from ζ̂(t), t ∈ R,
to the orthogonal projection of̂ζ(t) onto the spacee(ζ(t + dt)). In fact, this way the norm
of a horizontally transported vector in the fiber is left invariant while its base point moves
along the curve inM. In other words, the connection on the bundle corresponding to the
horizontal transport is compatible with the Hermitian structure.

Berezin–Toeplitz quantization realizes a class of such continuous representations in a
setting that is familiar in algebraic geometry[30]. If L is a holomorphic line bundle over
a Kähler manifold, then the curvature of the line bundle is a closed two-form[31]. This
two-form is up to an imaginary factor assumed to be equal to the symplectic form onM. The
Hilbert space chosen by Berezin–Toeplitz quantization is the space of holomorphic sections
that are square-integrable with respect to Liouville’s measure, the maximal exterior power
of the curvature form. These requirements are needed to show a correspondence principle for
compactM [9,18]. Unfortunately, they also restrict the universality of Berezin–Toeplitz
quantization. Not all symplectic manifolds can be equipped with a compatible complex
structure, and even less may be obtained as the base manifold of a holomorphic line bun-
dle such that its curvature is a constant multiple of the original symplectic form[18]. In
order to provide a resolution of the identity idH according to

∫
MΠx dm(x) = idH, the

measurem is chosen as a locally rescaled version of the Liouville form, see[11]. More
generally, Berezin–Toeplitz quantization maps the classical observable represented by a
bounded real-valued functionf : M → R to the self-adjoint operator obtained from
Tf := ∫

M f(x)Πx dm(x). In both cases, the integral converges in the strong sense. The
quantization of dynamics is then realized with the unitary group{e−itTf }t∈R that results
from choosingf as the generator of classical time-evolution.

2.1. Hilbert spaces of square-integrable, holomorphic sections

Definition 1. Let us assume that a complex line bundleL
π→M is equipped with a Hermitian

metric h = {hx}x∈M on its fibers. To be precise, for each base pointx ∈ M there is a
sesquilinear metrichx : Lx×Lx → C on the associated fiberLx. By convention, eachhx is
conjugate linear in the first argument. We will only consider finite-dimensional manifolds,
n := dimCM <∞. Given a measurem onM we may define an inner product

(ψ, φ) :=
∫
M
h(ψ, φ)dm (1)

for sufficiently regular sectionsψ andφ, whereh(ψ, φ) is interpreted as the functionx �→
hx(ψ(x), φ(x)).

Remark 2. In the definition of the inner product,h andm can be combined to a Hermitian
metric valued measure, hereafter denoted byhm. Indeed, this is a more appropriate way to
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view the definition, since the redundancy of rescalingh while changingm to compensate
accordingly is manifest in the notation.

Definition 3. The linear space of sections inLwill be denoted asΓL(M). The subspace of
square-integrable sections on a complex line bundleL over a base manifoldM is denoted
by

L2(hm) :=
{
ψ ∈ ΓL(M) :

∫
M
h(ψ,ψ)dm <∞

}
. (2)

WhenL is a holomorphic line bundle, we define the generalized Bergman spaceL2
hol(hm)

as the space of all holomorphic sections inL2(hm).

Remark 4. Equipped with the previously defined inner product, the spaceL2(hm) contain-
ing all square-integrable sections becomes a Hilbert space in the usual way by identifying
sections that differ up to sets ofhm-measure zero.

If L is a holomorphic line bundle andm, interpreted as a volume form, andh are ev-
erywhere non-degenerate and smooth, then the generalized Bergman spaceL2

hol(hm) is a
space of functions that may be identified with a Hilbert-subspace ofL2(hm). An outline of
the completeness proof is given inAppendix A.

It may happen thatL2
hol(hm) only contains the zero section. Therefore, results about the

dimensionality of this space are of fundamental interest. For the case of compactM, see
[9].

Lemma 5. Given a vectoru in a fiber abovex := π(u), the point-evaluation

ϑu : L2
hol(hm)→ C, ψ �→ hx(u,ψ(x)) (3)

defines a bounded linear functional, and by the Riesz representation theorem this evaluation
can be realized as an inner productψ̃(u) := (eu, ψ) = ϑu(ψ)with a sectioneu ∈ L2

hol(hm).
Two such sections form a kernel functionk(u, v) := (eu, ev) that is defined onL× L and
sesquilinear in the fibers.

Proof. The detail that mostly deserves explanation is the boundedness ofϑu. To verify this,
we choose a local trivializationξ around the fiber generated byu, mappingπ−1(U) ⊂ L,
the subset ofL above an open setU to V × C, with an open ballV ⊂ C

n having the first
component ofξ(u) as the center.

Given a convergent sequence of sections{ψ(l)}l∈N, we use as inAppendix Athe mean
value property of the associated holomorphic functions onV to bound the value ofϑu(ψ(l))
by a constant times theL2-norm of ψ(l). Since the sequence has the Cauchy property,
ϑu(ψ

(l)) is also Cauchy, and therefore convergent.
The sesquilinearity ofk results from the scaling propertyecu = c̄eu for anyc ∈ C and

u ∈ L. �

Definition 6. A Schwartz kernel in a complex line bundleL is a family of linear mappings
{S(x, y) : Ly → Lx}x,y∈M, that is,S(x, y) is linear in vectors with base pointy and has as
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its values vectors atx. If S(x, y) is jointly continuous inx andy, then it can be interpreted
as continuous section in the bundleL ⊗ L∗ → M ⊗M, whereL∗ is the dual bundle
associating with eachx ∈M the space of complex linear forms onLx.

Proposition 7. The Schwartz kernelK given in the terminology of the preceding lemma
byK(x, y)v = ev(x) for v ∈ π−1(y) is jointly continuous inx andy. We will callK the
reproducing kernel ofL2

hol(hm) because of the identity

ψ(x) =
∫
M
K(x, y)ψ(y)dm(y). (4)

Proof. The joint continuity follows from the continuity ofev in v and the uniform con-
vergence of Cauchy sequences inL2

hol(hm). These properties may be obtained using the
definition ofev via (3) and the argument inAppendix A.

To derive(4), we consider in a first step the adjoint map(K(x, y))∗ : π−1(x)→ π−1(y), in
the usual way defined byu �→ hx(K(x, y)v, u)v, independent of the choice of a normalized
vectorv ∈ π−1(y), ‖v‖ = 1. We claim that(K(x, y))∗ = K(y, x), which means for allu, v
in fibers abovex andy, respectively, the equationhx(u,K(x, y)v) = hy(K(y, x)u, v) holds.
To simplify the following calculation, we assume thatu andv are normalized; the general
case follows by rescaling:

hx(u,K(x, y)v) = hx(u, ev(x)) = hx(u, ẽv(u)u) (5)

= ẽv(u) = ẽu(v) (6)

= hy(ẽu(v)v, v) = hy(eu(y), v) (7)

= hy(K(y, x)u, v). (8)

The second step for the derivation of(4) uses again a normalized vectoru abovex,

ψ(x) = ψ̃(u)u = (eu, ψ)u =
∫
M
hy(eu(y), ψ(y))udm(y), (9)

ψ(x) =
∫
M
hy(K(y, x)u,ψ(y))udm(y) (10)

=
∫
M
hx(u,K(x, y)ψ(y))udm(y) (11)

=
∫
M
K(x, y)ψ(y)dm(y). � (12)

Comment 8. One of the goals in this work is to find a formula for this kernel. In principle,
one could follow a Gram–Schmidt orthogonalization procedure, construct an orthonormal
basis of sections{ηl}l∈N and then express the reproducing kernel as a seriesK(x, y) =∑
l ηl(x)hy(ηl(y), ·) that terminates after finite terms or converges uniformly on compact

sets inM ×M. However, this procedure is too abstract to show how the geometry of
L shapes the kernel. We will therefore present an alternative strategy, expressingK in a
probabilistic way.
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Consequence 9.If hm is smooth and nowhere degenerate, then any bounded operatorB

on L2
hol(hm) possesses a sesqui-analytic integral kernelB(x, y) that is characterized by

the equationhx(u, B(x, y)v) = (K(·, x)u, BK(·, y)v), and the image ofψ ∈ L2
hol(hm) is

expressed as

Bψ(x) =
∫
M
B(x, y)ψ(y)dm(y). (13)

Proof. That B(x, y) is indeed an integral kernel results from the reproducing property
(9) and Fubini’s theorem. The sesqui-analyticity ofB(x, y) follows because the mapping
v �→ K(·, π(v))v = ev intoL2

hol(hm) is antiholomorphic. �

Remark 10. Since the right-hand side ofEq. (13)is defined even forψ ∈ L2(hm), any
bounded operator extends naturally via its integral kernel to all ofL2(hm). From this point
of view,K(x, y) is the integral kernel of an orthogonal projection operator, henceforth also
calledK, that mapsL2(hm) ontoL2

hol(hm).

2.2. Berezin–Toeplitz operators defined via quadratic forms

In the remaining text, we assume thath andm are smooth and non-degenerate to ensure
thatL2

hol(hm) is complete.

Definition 11. Given the Hilbert spaceL2
hol(hm) and a real-valued functionf :M→ R,

we consider the sesquilinear form

Tf : Q(Tf )×Q(Tf )→ C, (14)

(ψ, φ) �→
∫
M
f(x)hx(ψ(x), φ(x))dm(x) (15)

with form domain

Q(Tf ) :=
{
ψ ∈ L2

hol(hm) :
∫
M
|f(x)|hx(ψ(x), ψ(x))dm(x) <∞

}
. (16)

When referring toTf as a quadratic form, it is really the functionψ �→ Tf (ψ,ψ) that is
meant.

Definition 12. Given a real-valued, bounded functionf :M→ R, the formTf specified
in the preceding definition is bounded and symmetric. Therefore, it is associated with a
self-adjoint operatorTf satisfying(ψ, Tfψ) = Tf (ψ,ψ) for all ψ ∈ L2

hol(hm). In the
context of generalized Bergman spaces, we callTf a self-adjoint Berezin–Toeplitz operator
and the functionf its symbol.

Remark 13. The original definition according to Berezin[1,2] and its geometric interpreta-
tion by Cahen et al.[9–13]do not refer to sesquilinear forms. Indeed, for bounded symbols
the approach chosen here offers no new insights.
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However, the use of sesquilinear forms is convenient for the construction of semibounded
Berezin–Toeplitz operators described in the remaining part of this section. The implicit goal
is to find a large class of possibly unbounded symbolsf that lead to closed, semibounded
quadratic formsTf and thus yield unique self-adjoint Berezin–Toeplitz operatorsTf via
the Friedrichs construction characterized byEq. (19). In fact, this goal leads the discussion
from abstract conditions ensuring the semiboundedness ofTf to a more concrete class of
admissible symbols presented in the next section.

Lemma 14. If the formTf+ belonging to the positive partf+ : x �→ max{f(x),0} of a
functionf : M → R is densely defined and the negative partf− : x �→ max{−f(x),0}
can be incorporated inTf as a form-bounded perturbation, meaning

Tf−(ψ,ψ) ≤ c1Tf+(ψ,ψ)+ c2‖ψ‖2 (17)

with a relative form boundc1 < 1 and a constantc2 ≥ 0, thenTf is closed onQ(Tf ) =
Q(Tf+) and has a lower boundc ∈ R, such thatTf (ψ,ψ) ≥ c‖ψ‖2.

Proof. The first part of the proof is to show that the sesquilinear form belonging to a
non-negative functionf ≥ 0 is closed, in other words, we need to show thatQ(Tf ),
equipped with the form-norm‖ • ‖Tf defined by

‖ψ‖Tf := (Tf (ψ,ψ)+ ‖ψ‖2)1/2 for ψ ∈ Q(Tf ), (18)

is complete.
Suppose(ψl)l∈N is a Cauchy sequence with respect to the form-norm. Due to the esti-

mate‖ψ‖ ≤ ‖ψ‖Tf the sequence is convergent inL2
hol(hm), ψl → ψ. Using pointwise

convergence and Fatou’s lemma, we obtain‖ψ − ψl‖Tf ≤ lim inf k→∞‖ψk − ψl‖Tf and
therefore the sequence(ψl)l∈N converges with respect to the form-norm.

The remaining part of the proof is the so-called KLMN theorem, see[32] or [33, Theorem
X.17]. It goes back to works of Kato[34], Lax and Milgram[35], Lions [36] and Nelson
[37]. �

Proposition 15. If the formTf is closed and has the greatest lower boundc ∈ R, then it
belongs to a unique self-adjoint operatorTf that is characterized in terms of the square-root√
Tf − c satisfying

(
√
Tf − cφ,

√
Tf − cψ)+ c(φ,ψ) = Tf (φ, ψ) (19)

for all φ andψ in the domainD(
√
Tf − c) = Q(Tf ).

Proof. Again, we refer to the literature[38, Theorem VIII.15]or [39, Theorem 5.36]for
the proof of this result which we call the Friedrichs construction. �

Remark 16. As a special case ofConsequence 9, whenf is a bounded function,Tf has an
integral kernelTf (x, y) characterized byhx(u, Tf (x, y)v) = (K(·, x)u, fK(·, y)v), where
u, v ∈ L have base pointsx andy, and the scalar product is taken inL2(hm).
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For ψ ∈ Dmin(Tf ) := {ψ ∈ L2
hol(hm), fψ ∈ L2(hm)}, the identityTfψ = K(fψ)

relatesTf to the traditional way of defining a Berezin–Toeplitz operator as a composition
of a multiplication operator with the orthogonal projectionK. However, it may happen that
Dmin(Tf ) does not include all ofL2

hol(hm), although the operatorTf is bounded.
A disadvantage of definingTf by a semibounded form is that in general, nothing is known

about its domain. The situation is different, if a domain of essential self-adjointness can be
identified forTf . Such situations have been investigated in detail[40,41]for the case of the
so-called Fock–Bargmann space.

The definition of Berezin–Toeplitz operators clearly does not rely on the validity of a
correspondence principle, and we will also not need to refer to it hereafter. Because of its
physical importance, we mention that in the special setting of holomorphic line bundles
over homogeneous or compact Kähler manifolds, the Berezin–Toeplitz operators defined
on the Hilbert spaceL2

hol(hm), withm being the Liouville form associated with the bundle
curvature, are known to observe a correspondence principle, see[2,17]or [9,18]. Moreover,
in the compact case the same kind of classical asymptotics can be proved for more general
almost complex manifolds[42].

3. Self-adjoint Berezin–Toeplitz operators as monotone limits of semibounded
Schrödinger operators

The main motivation for this section is to relate Berezin–Toeplitz and Schrödinger opera-
tors. An important application concerns the transfer of well-known self-adjointness criteria
to the setting of Berezin–Toeplitz operators. In this section and the following one we derive
conditions that are more accessible than verifying the abstract form-boundedness ofTf−
with respect toTf+ according to inequality(17).

At first, the Riemannian structure seems to be an auxiliary element that is not needed in
the definition of Berezin–Toeplitz operators according to the prescription of the preceding
section. However, continuing the line of thought in the introductory remarks given there,
we note that due to the coherent state embedding the inner product of the Hilbert space
provides a natural metric onTL, which by its invariance under scalar multiplication in the
fibers passes as Fubini–Study type metric[43, Appendix 3]to the tangent bundleTM. It
is straightforward to check that the imaginary, skew-symmetric part of the Fubini–Study
metric is closed, which makesM a Kähler manifold. The real part of this metric can then
be used to define a Riemannian structure. In short, a Riemannian metric is present as a
consequence of the quantization prescription.

In the following, we consider Hilbert spacesL2
hol(hm) of square-integrable holomorphic

sections in a holomorphic Hermitian line bundleL that has a base manifoldM with a
Kähler metric. A priori, the natural volume measurem associated with the real part of the
Kähler metric need not be in a prequantum relation(33)with the curvature ofL.

3.1. Bochner–Laplacian and its relation to the holomorphic Laplacian

Several Laplacian’s will be introduced in this section, each one is characterized by an
associated positive definite quadratic form. Later, Schrödinger operators will arise from
perturbations of these forms.
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Convention 17. By default,M is always ad-dimensional Riemannian manifold, and when-
ever it appears in conjunction with the holomorphic line bundleL, it is tacitly understood
to be the base manifold, withd = 2n. The Hermitian metrich onL and the natural volume
measurem onM are as forms assumed to be smooth and non-degenerate. The class of
smooth vector fields that are at each point real-valued differential operators on real-valued,
smooth functions is written asΥR(M). The complexified version is written asΥ(M).
Whenever a smooth vector fieldY vanishes on all antiholomorphic functions, we write
Y ∈ Υ(1,0), and if this happens for all holomorphic onesY ∈ Υ(0,1). We will not distinguish
between a Riemannian metricg on the tangent bundleTM and its sesquilinear extension
to the complexified tangent bundleTCM, as usual conjugate linear in the first argument.
Similarly, the Levi-Civita connection Cov is made complex linear onTCM× TCM, and
the divergence div is thus defined as the trace TrTMbY for all Y ∈ Υ(M)with the sesquilin-
ear form given bybY : (X,Z) �→ (X,CovZY). The gradient of a functionf is a vector field
denoted as gradf .

With a view toLemma 19, from now on all manifolds are tacitly assumed to be pathwise
connected.

Definition 18. The operator obtained by the Friedrichs construction corresponding to the
closure of the quadratic form

E(f, f ) :=
∫
M
g(gradf,gradf )dm (20)

with initial form domainC∞c (M) is called the negative Dirichlet Laplacian−, onL2(m).
SupposeL is a Hermitian line bundle with a compatible connection∇. The negative

Bochner–Laplacian−,L onL2(hm) arises via the Friedrichs construction from

EL(ψ,ψ) :=
∫
M

TrTMh(∇ψ,∇ψ)dm (21)

defined onC∞cL(M), the space of smooth sections with compact support. Hereby, the trace
operation is defined as before by choosing an orthonormal basis{Ek}dk=1 in eachTxM such

that TrTMh(∇ψ,∇ψ) =∑d
k=1 h(∇Ekψ,∇Ekψ).

Lemma 19. Every complete Riemannian manifoldM admits a localizing sequence of
smooth cut-off functions with a uniformly attenuated gradient bound. This means, there
is an increasing sequence{ηl}l∈N of smooth functionsηl pointwise converging to unity,
ηl(x) ↗ 1 for all x ∈M, eachηl has compact support, and the uniform gradient bound
g(gradηl,gradηl) ≤ Cl holds for some sequence{Cl}l∈N of positive numbersCl ≥ 0
converging to zero.

Proof. The construction uses a result by Greene and Wu[44, Corollary to Proposition 2.1],
by which one may approximate the distance from a fixed pointy ∈ M with a smooth
function. To be precise, one obtains a smooth functionυ :M→ R such that‖gradυ‖ < 1
and|υ(x)− dist(x, y)| < 1 for all x ∈M.

For the construction of the cut-off functions, we pick a real-valued smooth function
η : R → [0,1] that is bounded above and below by characteristic functionsχ[−1,1] ≤
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η ≤ χ[−2,2], ensuring compact support in the interval [−2,2]. The compositionηl(x) :=
η((1/2l)υ(x)) then defines an increasing sequence of smooth functionsηl ↗ 1 with the
gradient bound

gradηl = 1

2l
η′

(
1

2l
υ(x)

)
gradυ(x) ≤ 1

2l
maxr∈R|η′(r)|. (22)

In addition, due to the completeness of the manifold, the support of eachηl is compact since
it is contained in the closed setυ−1([−2l,2l]). �

Theorem 20. If the Riemannian manifoldM is complete, then−, is essentially self-adjoint
onC∞c (M).The same holds for−,LwithC∞cL(M)as a domain of essential self-adjointness.

Proof. It is sufficient to show this for,L, since, can be considered as the Bochner–
Laplacian on the trivial bundleM × C with the obvious Hermitian structure. We adapt
Davies’ treatment of the Dirichlet Laplacian[45, Theorem 5.2.3]in combination with the
localizing sequence of cut-off functions described in the preceding construction.

The essential self-adjointness of−,L is by its positivity equivalent[33, Theorem X.26]
to having only the zero vector in the orthogonal complement of(−,L + 1)C∞cL(M).

Suppose there is a non-zero vectoru ⊥ (−,L+1)C∞cL(M), in other words the equation
,Lu = u has a weak solutionu ∈ L2(hm). Using the localizing sequence{ηl}l∈N described
above, we may estimate

0 ≥ −‖ηlu‖22 = EL(η2
l u, u) =

∫
M

d∑
k=1

h(∇kη2
l u,∇ku)dm

=
∫
M

d∑
k=1

2ηlEk(ηl)h(u,∇ku)dm+
∫
M

d∑
k=1

η2
l h(∇ku,∇ku)dm.

(23)

The last term is positive and we conclude that it must be bounded by∫
M

d∑
k=1

η2
l h(∇ku,∇ku)dm ≤ 2

∫
M

d∑
k=1

ηl|Ek(ηl)||h(u,∇ku)|dm (24)

≤ 2
∫
M

d∑
k=1

ηl|Ek(ηl)|
√
h(u, u)h(∇ku,∇ku)dm (25)

≤ 2
∫
M
ηl‖gradηl‖∞

√
h(u, u)

∑
k

h(∇ku,∇ku)dm, (26)

where the Cauchy–Schwarz inequality has been used repeatedly. With the abbreviation
cl := ηl

√∑
k h(∇ku,∇ku), we obtain∫

M
c2l dm ≤ 2

∫
M
cl‖gradηl‖∞

√
h(u, u), (27)
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and after using the Cauchy–Schwarz inequality again,

‖cl‖22 ≤ 2‖cl‖2‖gradηl‖∞‖u‖2. (28)

To avoid confusion,‖ · ‖2 denotes theL2-norm and the term‖gradηl‖∞ the essential
supremum of the Riemannian length of gradηl(x) overx ∈M. This last inequality involves
finite quantities on both sides, becauseu is a smooth function by an argument related to
Sobolev norms as inAppendix B. The properties of the localizing sequence{ηl} imply
that the right-hand side approaches zero in the limitl→∞. Therefore, by Fatou’s lemma
EL(u, u) = 0 or∇u = 0, which is in contradiction to the assumption,Lu = u �= 0. �

Now we investigate the interplay between Riemannian and complex structures onM.

Definition 21. Suppose we pick a local section in the orthonormal frame bundle ofT (0,1)M,
which means in a sufficiently small open setU ⊂M, we have antiholomorphic vector fields
Z̄1, Z̄2, . . . , Z̄d/2 ∈ Υ(0,1)(U) that are orthonormal,g(Z̄k, Z̄l) = δkl. For a sectionψ, the
value of the antiholomorphic trace Tr(0,1)h(∇ψ,∇ψ) := ∑

k h(∇Z̄kψ,∇Z̄kψ) depends on
the metric and the connection∇, not on the particular choice of orthonormal antiholomor-
phic vector fields. Therefore, we may define the negative holomorphic Laplacian−,(0,•), in
a manner analogous to the previous definitions as the operator corresponding to the closure
of the quadratic form

E(0,•)(ψ,ψ) :=
∫
M

Tr(0,1)h(∇ψ,∇ψ)dm (29)

initially defined on sectionsψ in the domainC∞cL(M).

Remark 22. Let g be a Riemannian metric on a complex manifoldM and Cov its Levi-
Civita connection. It is straightforward to check in local coordinates[31, Proposition 7.14]
that g is the real part of a Kähler metric if and only if it is compatible with the almost
complex structureJ and if Cov preserves the splitting ofΥ(M) into holomorphic and
antiholomorphic parts, that is, CovX JY= J CovXY for all X, Y ∈ Υ(M).

Proposition 23. Let g be the real part of a Kähler metric on thed-dimensional base
manifoldM of a holomorphic line bundleL, and assume the Bochner and holomorphic
Laplacians are defined as above. Then a Weitzenböck-type formula relates both Laplacians

,(0,•) = 1
2(,

L − ρ) (30)

with a zeroth-order termρ. Given an antiholomorphic orthonormal frame{Z̄k}d/2k=1 of

T (0,1)M, the termρ is expressed asρ(x)ψ(x) =∑d/2
k=1RZ̄k,Zkψ(x).

Proof. The first step of the proof is to identify−,(0,•) and,L as differential operators
when acting on a sectionψ ∈ C∞cL(M). According to the usual derivation[47] we find

,Lψ =
d∑
k=1

∇Ek∇Ekψ − ∇CovEk Ek
ψ, (31)
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and

,(0,•)ψ =
d/2∑
k=1

(∇Zk∇Z̄k − ∇CovZk Z̄k
)ψ. (32)

Here,{Ek, JEk}d/2k=1 is a local orthonormal frame inTM and the antiholomorphic frame

{Z̄k}d/2k=1 is obtained viaZ̄k = (1/
√

2)(Ek + iJEk) ∈ T (0,1)M. The derivation relies on
the compatibility of the connection∇ with the Hermitian metric, the resolution of the
identity

∑d/2
k=1((·, Ek)Ek+ (·, JEk)JEk) = idTM and the compatibility between the almost

complex structureJ and the Levi-Civita connection Cov. Now the claimed relationship
(30) follows from the torsion-free property of the Levi-Civita connection Cov that implies
[Z̄k, Zk] = Z̄kZk − ZkZ̄k = CovZ̄kZk − CovZk Z̄k. �

Remark 24. If the curvatureR of the bundle and the Kähler formω = (1/2)g(·, J ·) are in
the prequantum relation

RX,Y = i

�
ω(X, Y) (33)

for anyX, Y ∈ Υ(M), thenρ is a constant,

ρ = i
d/2∑
k=1

REk,JEk = −
1

2�

d/2∑
k=1

g(Ek,Ek) = − d
4�
. (34)

3.2. Berezin–Toeplitz operators as limits of Schrödinger operators

This section shows how a Berezin–Toeplitz operator can be extended to a family of
Schrödinger operators and be reconstructed as a monotone limit of this family. A major
benefit is that the knowledge about Schrödinger operators may be used to find sufficient
conditions for the semiboundedness ofTf , thereby ensuring the self-adjointness of the
associated Berezin–Toeplitz operator.

Convention 25. In the following,L is always a holomorphic Hermitian line bundle andg
is assumed to be the real part of a Kähler metric on thed-dimensional base manifoldM.
The connection∇ is by default compatible with the holomorphic and Hermitian structures.

Proposition 26. If the manifoldM is complete, then the spaceL2
hol(hm) is in the domain of

the form-closure ofE(0,•) and can be identified as the null-space{ψ ∈ L2(hm) : −,(0,•)ψ =
0} of the holomorphic Laplacian−,(0,•).

Proof. Givenψ ∈ L2
hol(hm), we need to construct a Cauchy sequence{ψl}l∈N in C∞cL(M)

which converges toψ with respect to the form-norm,‖ψl − ψ‖E(0,•) → 0. To this end, we
use an increasing sequence of localizing cut-off functionsηl : M→ [0,1] observing the
uniform gradient bound supx∈M‖gradηl(x)‖ ≤ C/2l for some constantC > 0, as described
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in the preceding part of this section. Then by monotone convergence‖ηlψ−ψ‖ → 0, and
the remaining term in the form-norm can be estimated by

E(0,•)(ηlψ, ηlψ) =
∫
M

∑
k

h(∇Z̄kηlψ,∇Z̄kηlψ)dm (35)

=
∑
k

∫
M
(|Zk(η̄l)|2h(ψ,ψ)+|ηl|2h(∇Z̄kψ,∇Z̄kψ)

+ 2R(Zk(η̄l)h(ψ,∇Z̄kψ)))dm (36)

≤ C
2

22l
‖ψ‖2+

∫
M
|ηl|2

∑
k

h(∇Z̄kψ,∇Z̄kψ)dm

+ 2
∫
M

∑
k

|Zk(η̄l)h(ψ,∇Z̄kψ)|dm.

(37)

Using the Cauchy–Schwarz inequality, we have

E(0,•)(ηlψ, ηlψ) ≤ C
2

22l
‖ψ‖2+ E(0,•)(ψ,ψ)+ 2C

2l
‖ψ‖(E(0,•)(ψ,ψ))1/2, (38)

so by dominated convergenceE(0,•)(ηlψ − ψ, ηlψ − ψ) → 0. Thus, both terms in the
form-norm converge to zero. �

Definition 27. A semibounded Schrödinger operatorSLD,q on L2(hm) is the self-adjoint
operator associated with the form

SLD,q(ψ,ψ) = DEL(ψ,ψ)+ (ψ, qψ), (39)

whereD > 0 is some coupling constant and the requirement

(ψ, q−ψ) ≤ c1SLD,q+(ψ,ψ)+ c2(ψ,ψ) (40)

is satisfied with relative form boundc1 < 1 and some constantc2 ≥ 0. Thus, the form
domain ofSLD,q is obtained from the closure ofC∞cL(M) ∩ {ψ : (ψ, q+ψ) <∞}.

Remark 28. If in addition to the requirement(40) the curvature termρ of Proposition 23
is also a form-bounded perturbation ofSL

D,q+ , then

S
(0,•)
D,q : ψ �→ SLD,Dρ+q(ψ,ψ) = DE(0,•)(ψ,ψ)+ (ψ, qψ), (41)

has the same form domain asSLD,q and also defines a generalized Schrödinger operator,

hereafter referred to asS(0,•)D,q .

Theorem 29. If the assumptions ofProposition 26andRemark 28are fulfilled, thenS(0,•)D,f

is semibounded andTf onL2
hol(hm) is closed and semibounded.
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Proof. First we noteS(0,•)D,f (ψ,ψ) = Tf (ψ,ψ) for anyD > 0 andψ ∈ Q(Tf ). Thus, we

only need to show that the restriction ofS(0,•)D,f to the closed subspaceL2
hol(hm) is again a

closed and semibounded form.
To show closedness, assume a sequence(ψl)l∈N inL2

hol(hm)which is Cauchy with respect

to the form-norm. Then by the closedness ofS(0,•)D,f the sequence has a limitψ ∈ Q(S(0,•)D,f ).

However, this limit is contained inL2
hol(hm), because the sequence(ψl)l∈N also converges

with respect to the usual norm onL2
hol(hm).

Semiboundedness follows from the inequality:

inf
ψ∈L2(hm)
‖ψ‖=1

S
(0,•)
D,f (ψ,ψ) ≤ inf

ψ∈L2
hol(hm)

‖ψ‖=1

S
(0,•)
D,f (ψ,ψ) (42)

due to the set inclusionL2
hol(hm) ⊂ L2(hm). �

Remark 30. As stated, the above theorem does not imply thatTf is densely defined.

Therefore,Tf might be self-adjoint only on a Hilbert-subspace ofL2
hol(hm).

In analogy withLemma 14, it is sufficient for the closedness and semiboundedness of
Tf when for someD > 0 the negative partf− can be incorporated as a form-bounded

perturbation ofS(0,•)
D,f+ with relative form bound strictly less than one. However, this condi-

tion is not as easy to characterize in terms off as the stronger assumption in the preceding
theorem.

Consequence 31.If the assumptions of the preceding theorem hold, then the semigroup
generated byS(0,•)D,f converges in the limitD→∞strongly to a Berezin–Toeplitz semigroup,

lim
D→∞

e−tS(0,•)
D,f ψ = e−tTf Kfψ, (43)

wheret > 0,ψ ∈ L2(hm), and the orthogonal projectorKf = K∗fKf maps onto the closure

of Q(Tf ) in L2
hol(hm).

Proof. The limitD→∞ of S(0,•)D,f yields a non-densely defined quadratic form

S
(0,•)
∞,f : ψ �→ lim

D→∞
S
(0,•)
D,f (ψ,ψ), (44)

which is by inspection identical withTf .
The monotone convergence implies then thatTf is closed[48] and the semibounded-

ness follows from that ofS(0,•)D,f ≤ Tf for someD > 0. These properties imply that the

Berezin–Toeplitz operatorTf associated withTf is self-adjoint on the closureQ(Tf ) ⊂
L2

hol(hm). Again by the monotone convergence of forms the self-adjoint operatorsS
(0,•)
D,f

converge in the strong resolvent sense[48], which in turn implies strong convergence of
the semigroups they generate[38, Theorem S.14]. �
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4. Probabilistic representation of Berezin–Toeplitz semigroups

This section introduces a new element into the discussion of Berezin–Toeplitz operators,
the concept of Brownian motion on the base manifoldM of the holomorphic line bundle
L. In terms of this stochastic process, one may characterize the Kato class of functions
onM. It turns out that Kato decomposable functionsf lead to semibounded, self-adjoint
Berezin–Toeplitz operatorsTf onL2

hol(hm), wherem is the Riemannian volume measure
onM. The final result in this section is a probabilistic expression for Berezin–Toeplitz
semigroups, referred to as the Daubechies–Klauder formula. It is convenient that the validity
of the Daubechies–Klauder formula is expressed in terms of the Kato class associated with
Brownian motion and thus the admissibility of bundle curvature and classical Hamiltonian
in the quantization procedure and path integral formulation are intrinsically characterized
by the underlying geometry.

4.1. The Kato class and a version of the Feynman–Kac formula

We adopt the usual terminology. An almost surely continuous processB with values in
the Riemannian manifoldM is called Brownian motion with diffusion constantD > 0 if
for every smooth functionφ ∈ C∞(M), the difference

Mt := φ ◦ Bt − φ ◦ B0−
∫ t

0
D,φ ◦ Bs ds (45)

is a real-valued continuous local martingaleM.
A probability measure governing Brownian motion with diffusion constantD > 0 and

almost surely fixed starting pointB0 = x will be denoted asPDx . The expectation with
respect to this probability measure is written asE

D
x .

A Riemannian manifoldM is called Brownian complete if for a fixed diffusion constant
D > 0, a Brownian motionB starting at anyx ∈M has an infinite explosion time.

Definition 32. LetM be a Brownian complete Riemannian manifold with and{PDx }x∈M a
family of Brownian motion measures with a fixed diffusion constantD > 0. A real-valued
functionq :M→ R belongs to the Kato classK(PD) if the following condition is satisfied:

lim
t↘0

sup
x∈M

∫ t

0
E
D
x [|q|(Bs)] ds = 0. (46)

Whenever this property holds only locally, which means for all productsχΛq ∈ K(PD)
with characteristic functionsχΛ of compact setsΛ inM, we writeq ∈ Kloc(P

D).
If a real-valued functionq satisfiesq+ ∈ Kloc(P

D) andq− ∈ K(PD) then it is called
Kato decomposable, symbolized asq ∈ K±(PD).

Remark 33. If a function has the global or local Kato property for one choice ofD > 0,
then this holds for anyD > 0. The reason to includeD in the definition is merely for the
consistency of notation.

If the Ricci curvature of a Riemannian manifold is bounded from below, then the kernel
is on compact sets up to any finite time uniformly bounded away from zero[45,46]. As a
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consequence, the local Kato property implies local integrability with respect to the volume
measure,Kloc(P

D) ⊂ L1
loc(m).

The following lemma goes back to Khaśminskii [49]. Our discussion of the Kato class
proceeds along the nice exposition in[50, Section 1.2]. The sole purpose of the following
passage is to show that functions from the Kato class can be viewed as infinitesimally
form-bounded perturbations of the Dirichlet and Bochner–Laplacians.

Lemma 34. Suppose0 ≤ q ∈ K(PD), andt > 0 is chosen such that

κ := sup
x∈M

E
D
x

[∫ t

0
q(Br)dr

]
< 1, (47)

then

sup
x∈M

E
D
x [e

∫ t
0 q(Br)dr] ≤ 1

1− κ . (48)

Proof. We refer to the proof in[50, Lemma 2.1], which is concerned with the special case
of Brownian motion in Euclidean space. However, the formulation given there transfers
literally without modification to the general situation on manifolds. The essential steps are
to expand the exponential, to use time-ordering and the Markov property, and to inductively
apply the assumption to obtain a geometric series inκ. �

Consequence 35.Khásminskii’s lemma implies that forq ∈ K(PD), the mappingQt given
by

Qtφ(x) := E
D
x [e

∫ t
0 q(Br)drφ(Bt)] (49)

has a bound‖Qt‖∞,∞ := supx∈M,‖φ‖∞=1|Qtφ(x)| ≤ eCt/(1− κ) onL∞(m) with expo-
nential growth int. Thus{Qt}t≥0 is a semigroup of operators onL∞(m).

Proof. Again, we refer to[50, Theorem 2.2]. The idea is to split [0, t] into subintervals,
to inductively useLemma 34in conjunction with the Markov property, and to bound the
resulting expression with an exponential. �

Lemma 36. Given a non-negative functionq ∈ K(PD), then for anyc1 > 0 there is a
c2 > 0 such that∫

M
q|φ|2 dm ≤ c1DE(φ, φ)+ c2‖φ‖22, (50)

wheneverφ ∈ Q(E). In other words, functions from the Kato class act as infinitesimally
form-bounded perturbations of−D,.

Proof. The proof proceeds in two steps:

Step 1. Forq ∈ K(PD), the expression(49) defines a strongly continuous semigroup
{Qt}t≥0 of bounded, self-adjoint operatorsQt onL2(m).
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The preceding lemma together with the Jensen and Cauchy–Schwarz inequalities
establish the boundedness,∫
M
|EDx [e

∫ t
0 q(Bs)dsφ(Bt)]|2 dm(x) (51)

≤
∫
M

E
D
x [e2

∫ t
0 q(Bs)ds]EDx [|φ(Bt)|2] dm(x) ≤ 1

1− κ eCt‖φ‖22. (52)

Because of the Markovian semigroup property, it is enough to show strong conti-
nuity att = 0. To this end, we consider

lim
t↘0

∫
M
|EDx [(e

∫ t
0 q(Bs)ds − 1)φ(Bt)]|2 dm(x), (53)

≤ lim
t↘0

∫
M

E
D
x [(e

∫ t
0 q(Bs)ds − 1)2]EDx [|φ(Bt)|2] dm(x), (54)

≤ lim
t↘0

sup
x∈M

E
D
x [e2

∫ t
0 |q|(Bs)ds − 1]

∫
E
D
x [|φ(Bt)|2] dm(x). (55)

The last step involves Hölder’s inequality and the elementary estimate(ec−1)2 ≤
e2|c| − 1 for any real numberc ∈ R. Using the definition of the Kato class in this
estimate shows that the limit of theL2-norm in(53)vanishes.

Moreover, by the time reversal invariance of Brownian motion eachQt is seen to
be self-adjoint, and according to the Hille–Yosida theorem, there is a semibounded,
self-adjoint generator of the semigroup. Given anyc1 > 0, we choose a suitable
constantc2 such that replacingq by q̃ := q/c1 − c2/c1 in the above procedure
yields a contraction semigroup.

Step 2. If we approximatẽq ∈ K(PD) with a sequence of semibounded functionsq̃l :=
min{q̃, l}, then for anyφ ∈ Q(E) the generator of the contraction semigroupQ̃t
associated with the functioñql gives rise to a quadratic form

lim
t↘0

1

t
(φ, Q̃tφ − φ)=−DE(φ, φ)− c2

c1
‖φ‖22+

(
φ,min

{
q

c1
, l+ c2

c1

}
φ

)
≤ 0

(56)

because−D, is essentially self-adjoint and the multiplication byq̃l is a bounded
operator. The contractivity of the semigroup furnishes the last inequality, which in
turn yields the form-boundedness condition(50) by monotone convergence in the
limit l→∞. �

Proposition 37. Let L be a Hermitian line bundle with a connection and an associated
length-preserving horizontal transportH . Suppose the base manifoldM is Riemannian
and Brownian complete, equipped with a family of Brownian motion measures{PDx }x∈M
having a common diffusion constantD > 0. Thenq ∈ K(PD) is also a form-bounded
perturbation of the negative Bochner–Laplacian−,L.
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Proof. To make contact with the preceding lemma, we fixψ ∈ L2(hm)and define a function
φ ∈ L2(m) with valuesφ(x) := √hx(ψ(x), ψ(x)).

We may now verify theL2-boundedness of the operatorsQLt given by

QLt ψ(x) := E
D
x [e

∫ t
0 q(Br)drH−1

B,t ψ(Bt)] (57)

with an estimate using that horizontal transport preserves the Hermitian metric and the same
strategy as in the preceding lemma,√

hx(Q
L
t ψ(x),Q

L
t ψ(x)) ≤ E

D
x [e

∫ t
0 q(Br)dr

√
hx(H

−1
B,t ψ(Bt), H

−1
B,t ψ(Bt))] (58)

= E
D
x [e

∫ t
0 q(Br)dr

√
hBt (ψ(Bt), ψ(Bt))] (59)

= E
D
x [e

∫ t
0 q(Br)drφ(Bt)] = e−tSD,qφ(x). (60)

A similar estimate gives

(ψ,QLt ψ − ψ) ≤ (φ,Qtφ − φ), (61)

and thus together with the preceding lemma the desired form-boundedness. �

Consequence 38.Therefore, anyq ∈ K(PD) may be used to define a form-bounded
perturbation of−D, or−D,L in order to define a self-adjoint Schrödinger operator. One
may also useSD,q+ orSL

D,q+ as the unperturbed forms and thus extend this construction

to define a Schrödinger operatorSD,q with q ∈ K±(PD).

Lemma 39(Feynman–Kac formula).LetL be a Hermitian line bundle with a connection
and a length-preserving horizontal transportH . Suppose the base manifoldM is Rieman-
nian and Brownian complete. Denote bym the natural volume measure onM and byP

D

a family of Brownian motion measures having a common diffusion constantD > 0.

If q ∈ K±(PD), then the image of a sectionψ ∈ L2(hm) under the semigroupe−tSLD,q

generated by the self-adjoint Schrödinger operatorSLD,q has the probabilistic representation

e−tSLD,qψ(x) = E
D
x [e−

∫ t
0 q(Br)drH−1

B,t ψ(Bt)]. (62)

The inverse of the stochastic horizontal transport appearing in this equation can either
be understood by appealing to localized expressions[51], i.e. one restricts to a subspace
of the probability space by introducing exit times of local coordinate patches and then
reformulates the horizontal transport in a local trivialization, or one interprets(62) as a
shorthand for

hx(u,e
−tSLD,qψ(x)) = E

D
x [e−

∫ t
0 q(Br)drhBt (HB,tu, ψ(Bt))] (63)

with an arbitrary reference vectoru ∈ Lx.

Proof. The proof of formula(62) is given inAppendix C. �
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Consequence 40.LetL be a holomorphic Hermitian line bundle, assume its base manifold
M is Kähler, and letg denote the real part of the Kähler metric. Let{Zk}d/2k=1 denote a

local holomorphic orthonormal frame ofT 1,0M. If the curvature termρ = ∑d/2
k=1RZ̄j,Zj

determined by the connection of the line bundleL is Kato decomposable, then−,L and
−,(0,•) have the same domain and are essentially self-adjoint onC∞cL(M). If f is also Kato
decomposable, then the Feynman–Kac formula(62)with q = Dρ+ f gives an expression
for the Schwartz kernel of the semigroup generated byS

(0,•)
2D,f .

Definition 41. With the help of the distance function onM, the spaceCM([0, t]) of contin-
uous paths inM parameterized by an interval [0, t] can be turned into a complete, separable
metric space. In this setting, one may construct a regular conditional probability measure of
P
D
x givenBt [52, Theorem 5.3.19]. We denote byPD,tx,y the Brownian bridge measure, that is

the probability measure of the Brownian motion which starts atB0 = x and is conditioned
to arrive atBt = y. It is understood as a regular conditional probability distribution ofP

D
x

givenBt [53, pp. 146–150].

Consequence 42.With the assumptions ofConsequence 40, the Feynman–Kac formula
(62)can be modified to give an expression for the integral kernel of the Schrödinger semi-
group

e−tS(0,•)2D,f (x, y) = pD,t(x, y)ED,tx,y [e−
∫ t

0(Dρ(Br)+f(Br))drH−1
B,t ] (64)

generated byS(0,•)2D,f . Hereby, we use the unique heat kernel{pD,t}t>0 ofD,, the expectation

with respect to the Brownian bridge measureP
D,t
x,y given above, and the inverse of the

stochastic horizontal transport is understood as a linear mapping fromLy toLx.

Definition 43. In the following results, we always consider a fixed Kato decomposable
symbolf ∈ K±(PD). To simplify notation, we pick a reference diffusion constantD0 > 0
and abbreviate forc ≥ 0, v ∈ L the section

ηc,v := e
−S(0,•)2D0,cf(·, π(v))v (65)

obtained by keeping one end of the Schwartz kernel fixed.

Lemma 44. For anyv ∈ L andc ≥ 0, the sectionηc,v is contained inL2(hm). In addition,
the mappingc �→ ηc,v is strongly continuous.

Proof. Due to the linearity inv, it is enough to consider a vector of length‖v‖ = 1. The
L2-norm ofηc,v can then be estimated by repeatedly using the Cauchy–Schwarz and Hölder
inequalities:

‖ηc,v‖2 ≤ sup
v∈Ly,‖v‖=1

ψ∈L2(hm),‖ψ‖2=1

|(ηc,v, ψ)| ≤ sup
v∈L,‖v‖=1

ψ∈L2(hm),‖ψ‖2=1

|hπ(v)(e−S
(0,•)
2D0,cfψ(π(v)), v)|

(66)
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≤ sup
‖ψ‖2=1,x∈M

‖ED0
x [e−

∫ 1
0 (D0ρ+cf)(Bt )dtH−1

B,1ψ(B1)]‖ (67)

≤ sup
‖ψ‖2=1,x∈M

(ED0
x [e−2

∫ 1
0 (D0ρ+cf)(Bt )dt ]|ED0

x [‖ψ(Bt)‖2])1/2 (68)

≤ (‖e−SLD0,2D0ρ+2cf‖∞,∞)1/2‖p1(·, x)‖∞ <∞. (69)

The finiteness results from the Kato decomposability ofρ andf and from the boundedness
of the heat kernelp1 [45,46,54].

To see the strong continuity ofηc,v in c, we may for simplicity assumev to be again a
normalized vector and consider two non-negative coupling constantscandc′. If ψ ∈ L2(hm)
also has theL2-norm‖ψ‖2 = 1, then we may estimate

|(ηc,v − ηc′,v, ψ)|
= |ED0

π(v)[(e
− ∫ 1

0 (D0ρ+cf)(Bt )dt − e−
∫ 1

0 (D0ρ+c′f)(Bt )dt)hB1(HB,1v,ψ(B1))]|
≤ (ED0

π(v)[|hB1(v, ψ(B1))|2])1/2

×(ED0
π(v)[(e

− ∫ 1
0 (D0ρ+cf)(Bt )dt − e−

∫ 1
0 (D0ρ+c′f)(Bt )dt)2])1/2 (70)

≤ (ED0
π(v)[hB1(ψ(B1), ψ(B1))])

1/2

×(ED0
π(v)[(e

− ∫ 1
0 (D0ρ+cf)(Bt )dt − e−

∫ 1
0 (D0ρ+c′f)(Bt )dt)2])1/2. (71)

Taking the supremum overψ, ‖ψ‖2 = 1 on both sides together with theL2-contraction
property of the unperturbed heat semigroup generated byD0,

L yields

‖ηc,v − ηc′,v‖2 = sup
ψ∈L2(hm),‖ψ‖2=1

|(ηc,v − ηc′,v, ψ)|

≤ (ED0
π(v)[(e

− ∫ 1
0 (D0ρ+cf)(Bt )dt − e−

∫ 1
0 (D0ρ+c′f)(Bt )dt)2])1/2 (72)

≤ 2(ED0
π(v)[e

2
∫ 1

0 (D0ρ
−+c0f−)(Bt )dt ])1/2. (73)

The purpose of the last estimate is to show that with the help of some largec0, dominated
convergence applies to(72) in the limit c′ → c. �

Theorem 45(Daubechies–Klauder formula).LetL be a holomorphic line bundle with a
Hermitian metrich, suppose its base manifoldM is equipped with a Kähler metric, denote
its real part byg and the natural volume measure by m. LetM be Riemannian complete
with Ricci curvature bounded below, to ensure Brownian completeness. Let the real-valued
functionf :M→ R be Kato decomposable with respect to the Brownian motion measure
P
D onM, where the diffusion constantD > 0 is arbitrary. In addition, suppose the

curvature termρ defined inProposition 23is also Kato decomposable. To include the case
whenTf is not densely defined, we denote byKf the orthogonal projector onto the closure
of the form domainQ(Tf ) in L2

hol(hm).
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With these assumptions the integral kernel of the Berezin–Toeplitz semigroup
{e−tTf Kf }t≥0 is for t > 0 and almost everyx, y ∈M given by the probabilistic expression

(e−tTf Kf )(x, y) = lim
D→∞

pD,t(x, y)E
D,t
x,y [e−

∫ t
0(Dρ(Br)+f(Br))drH−1

B,t ]. (74)

In particular, we obtain the reproducing kernelK of L2
hol(hm) as a special case of this

formula whenf = 0.

Proof. In conjunction with the specific use of the Feynman–Kac formula inConsequence 42,
it is equivalent to show that the integral kernel of the Berezin–Toeplitz semigroup e−tTf Kf
onL2

hol(hm) is for t > 0 and almost everyx, y ∈M given by the pointwise limit

(e−tTf Kf )(x, y) = lim
D→∞

e−tS(0,•)
D,f (x, y), (75)

whereS(0,•)D,f is the semibounded Schrödinger operator defined byEq. (41).
We borrow the strategy of Bodmann et al.[55] and accommodate it to the manifold

situation and the case of unboundedf . The key to the present generalization is the use of
monotone form convergence.

We have to show that foru, v ∈ L at almost all base pointsx, y ∈M the equation

lim
D→∞

hx(u,e
−tS(0,•)

D,f (x, y)v) = (eu,e−tTf Kf ev) (76)

holds, which byConsequence 9characterizes the integral kernel of e−tTf Kf onL2
hol(hm) ⊂

L2(hm).
To see(76), we use the semigroup property and express the integral kernel with some

choice ofD0 > 0 in a scalar product

hx(u,e
−tS(0,•)

D,f (x, y)v) = (ηD0/D,u,exp(−tS(0,•)D−2D0,(D−2D0)f/D
)ηD0/D,v) (77)

that converges in the limitD→∞ to

lim
D→∞

hx(u,e
−tS0,•

D,f (x, y)v) = (η0,u,e
−tTf Kf η0,v). (78)

This can be deduced from the strong continuity ofηc,w in c for anyw ∈ L and the strong
convergence stated inConsequence 31together with the uniform-boundedness (according to
the Banach–Steinhaus theorem) of the operators exp(−tS(0,•)D−2D0,(D−2D0)f/D

) in D > 2D0.
To finish the proof, we observe that we may replaceη0,u andη0,v by eu andev on the

right-hand side of(78)becauseKfexp(−S(0,•)D0,0
)(·, w) = Kf (·, w) for almost everyw ∈M.

Thus we obtain (76) and hence the desired integral kernel for exp(−tTf )Kf onL2
hol(hm)

that is, in addition, continuous inx andy and therefore coincides with the right-hand side
of (76). The continuity of(78) is guaranteed by the continuity of the heat kernel derived in
Appendix B, and withKf exp(−S(0,•)D0,0

) = Kf it can be checked that it indeed constitutes
an integral kernel. �
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Remark 46. The probabilistic representation of Berezin–Toeplitz semigroups according
to formula(74) has also been called a Wiener-regularized path integral, because it gives
meaning to similar, non-rigorous versions of such path integrals.

With particular choices of holomorphic line bundles over homogeneous Kähler manifolds
related to Lie group representations[56], formula (74) yields an analog of the situations
considered by Daubechies et al.[20,24]. The particular Lie groups in consideration are the
Heisenberg–Weyl group, SU(2) and the affine group. In each of these cases, the complex
dimension of the manifoldM is n = 1, the Riemannian metricg is the real part of the
Kähler metric, and the imaginary, skew-symmetric part is in the prequantum relation(33)
with the curvature of the line bundle. For an explicit result that does not satisfy this relation,
see the treatment in[55] or [57]. The result given there differs from that of Daubechies and
Klauder[20] by a conformal rescaling of the Kähler metric on the base manifold.

It is worth pointing out that with a suitable analyticity argument, one could obtain from
formula (75) the probabilistic expression for the Schwartz kernel of the unitary group
e−itTf , which was a primary motivation for[19–24]. The case of boundedf may be treated
according to[55]. The techniques in[58] appear suitable for a generalization tof ∈ K(PD),
but the Kato decomposable case seems to require an additional effort.

5. Summary and outlook

In this work, we have studied a coordinate-independent quantization prescription in the
spirit of Berezin and its representation by Wiener-regularized path integrals according to
an idea of Daubechies and Klauder. In the present version, these path integrals express
semigroups that are generated by self-adjoint semibounded Berezin–Toeplitz operators on
a generalized Bergman space.

The first results concerned conditions that guarantee self-adjointness and semibound-
edness of Berezin–Toeplitz operators. The use of quadratic forms provided a convenient
framework to develop such conditions, which in the course ofSections 2–4evolved from
rather abstract form-boundedness to the more concrete requirement in terms of the Kato
class. The Dirichlet Laplacian provided a natural geometric characterization of this class.
Besides the Kato class, the holomorphic Laplacian proved central to our implementation of
the concept by Daubechies and Klauder on Kähler manifolds. More specifically, we consid-
ered perturbations of the holomorphic Laplacian in conjunction with a limiting procedure
and the Feynman–Kac formula to construct Wiener-regularized path integrals, a probabilis-
tic representation of the Schwartz kernel for the semigroup generated by a Berezin–Toeplitz
operator. One implication of this construction was that the reproducing kernel of a space
of holomorphic, square-integrable sections in a holomorphic Hermitian line bundle over a
Kähler manifold could be expressed in purely geometric terms.

The fundamental idea behind all those results was the relation between Berezin–Toeplitz
operators and Schrödinger operators, which enabled us to transfer all the relevant analytic
and probabilistic techniques.

As to further developments, one may ask whether Wiener-regularized path integrals can
also be found for continuous representations without underlying complex structures. A
step in this direction this has been pointed out by Alicki and Klauder[25] with the use
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of Dirac operators and spinc structures. Indeed, the completeness argument for the Hilbert
space inAppendix Acould be applied to a space of merely harmonic functions, since all
that is required are mean value and continuity properties. In addition, the context of Dirac
operators may provide enough analytic tools to replace techniques that so far relied on the
presence of complex structures. Another ramification is the concept of path transformations,
well known in the study of Schrödinger operators[58]. Indeed, one may use an invariance
property of Brownian motion under harmonic morphisms to relate the resolvents of different
Berezin–Toeplitz operators to one another[59]. Finally, it may be worthwhile to study the
use of Wiener-regularized path integrals to extend the correspondence principle from the
compact Kähler case to non-compact manifolds. Probabilistic representations have often
been useful to bridge between different function spaces. In this case, a suitable procedure
of approximating non-compact Kähler manifolds by compact ones in the path integral
representation could help enlarging the validity of the correspondence principle.
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Appendix A. Completeness of the generalized Bergman space

In this part of the appendix, we show that the spaces of holomorphic, square-integrable
sectionsL2

hol(hm) we consider are indeed Hilbert spaces. The main part is a localization
argument that reduces the setting to that of the space of square-integrable holomorphic
functions on the unit ball as studied by Bergman[60].

Let d2nz denote the Lebesgue measure onC
n. We recall that the open ballB(x, r) :=

{y ∈ C
n :

∑n
l=1 |yl − xl|2 < r2} centered atx ∈ C

n with radiusr ≥ 0 has the volume∫
Cn
χB(x,r)(z)d2nz = πnr2n/n!, wheren! := 1 · 2 · · · n denotes the factorial ofn.

Lemma A.1. The inner product spaceL2
hol(B(0,1)) of holomorphic functions that are

square-integrable with respect to the Lebesgue measure onB(0,1) is complete in the
norm-topology induced by the usualL2-inner product.

Proof. Let (fj)j∈N be a Cauchy sequence inL2
hol(B(0,1)). First we show uniform con-

vergence on all compact setsC insideB(0,1). For any such setC, we can find a non-zero
safety radiusr > 0 smaller than the distance fromC to the boundary ofB(0,1). Using
the mean value property for holomorphic functions, we can express the difference of two
function values at a pointx ∈ C as the difference between the averages of the two functions,
each computed for a disk centered atx. Then Jensen’s inequality in conjunction with the
convexity of the square-modulus functionc �→ |c|2 onC yields

sup
x∈C
|fj(x)− fk(x)|2 =

(
n!

πnr2n

)2

sup
x∈C

∫
B(x,r)

|fj(z)− fk(z)|2 d2nz, (A.1)
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sup
x∈C
|fj(x)− fk(x)|2 ≤

(
n!

πnr2n

)2 ∫
B(x,r)

|fj(z)− fk(z)|2 d2nz

=
(
n!

πnr2n

)2

‖fj − fk‖22. (A.2)

The right-hand side can be made arbitrarily small and thus the sequence(fj)j∈N converges
uniformly onC. By a standard argument in complex analysis, we conclude that the pointwise
limit defines a holomorphic functionf : f(z) = limj→∞ fj(z) in B(0,1).

That the convergencefj → f is also in the sense of theL2-norm follows from the
Cauchy property of the sequence and‖f −fk‖2 ≤ lim inf j→∞‖fj−fk‖2 due to pointwise
convergence and Fatou’s lemma. �

Theorem A.2. LetL be a holomorphic line bundle with the complex, n-dimensional base
manifoldM. Suppose the fibers ofL are equipped with a Hermitian metrich andM pos-
sesses a volume formm, both forms non-degenerate and smooth. Then the spaceL2

hol(hm)
of holomorphic, square-integrable sections inL forms a Hilbert space.

Proof. To begin with, we choose an atlas of local trivializations{ξj}j∈I and corresponding
reference sectionssj. That is, in each chart domainUj of the underlying atlas coveringM,
we choosesj such that the compositionξj ◦ sj has the constant value one in the second
component. Choosingξj : π−1(Uj) → Vj × C determinessj. Thus, we can identify
each sectionψ with a set of functions{ψj : Uj → C}j∈I that satisfyψ|Uj = ψjsj via
multiplication in the fibers.

Similarly, as in the preceding completeness proof, it is enough to show that any given
Cauchy sequence converges pointwise to a holomorphic section, which is a holomorphic
representative of the limit in theL2-sense.

To this end, we note that with the local reference sections, the Cauchy sequence{ψ(l)}l∈N
is represented by a sequence of holomorphic functionsψ

(l)
j : Uj → C. The image measure

ofm under a chartφj : Uj → Vj ⊂ C
n has a density with respect to the Lebesgue measure

onVj, dm(z) = mj(z)d2nz.
Suppose we have chosen local trivializationsξj with the range of each underlying chart

φj being a ball of radiusrj centered at the origin. The non-degeneracy and smoothness
of h andm imply that for eachUj, there is a strictly positive lower bound 0< εj <

mj(z). We deduce that{ψ(l)j }l∈N is a Cauchy sequence of holomorphic functions in the

conventional Bergman spaceL2
hol(Vj, εj d2nz). According to the preceding lemma, the

sequence converges pointwise to a holomorphic function. The limits obtained on each
Vj can then be recombined with the help of the reference sectionssj to give a global,
holomorphic section. This limit section is the holomorphic representative that coincides
almost everywhere with the limit of the Cauchy sequence{ψl}l∈N taken inL2(hm). �

Appendix B. Smoothness of heat kernels

The crucial idea used in the construction of the heat kernel is that the indexν ∈ N of a
Sobolev spaceWν,2(Rd) controls the regularity properties of its functions.
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To simplify the notation, we introduce a customaryd-dimensional multi-indexj =
(j1, j2, . . . , jd) with non-negative componentsj1, j2, . . . , jd ∈ Z

+ and define its degree
by |j| :=∑d

k=1 jk. Fork = (k1, k2, . . . , kd) ∈ R
d , we abbreviatekj := kj11 k

j2
2 , . . . , k

jd
d .

Definition B.1. The Sobolev spaceWν,2(Rd) with ν ∈ N consists of square-integrable
functionsf : R

d → C having Fourier transforms̃f : k �→ ∫
Rd

e−ik·x f(x)ddx that render
the Sobolev norm

∫
Rd
|f̃ (k)|2(1+ k2)ν ddk finite. Equipped with this norm,Wν,2(Rd) is

complete.

Lemma B.2. Given a fixed maximal degree0 ≤ l < ν − d/2, the linear functionals

δ(j)x : f �→
∫
Rd
kj eik·xf̃ (k)

ddk

(2π)d
(B.1)

with x ∈ R
d and |j| ≤ l are uniformly bounded onWν,2(Rd). Moreover, in this case

any functionf ∈ Wν,2(Rd) has anl-times continuously differentiable representativex �→
δ
(0)
x (f ).

Proof. This statement is a rearrangement of Cycon et al.[61, Theorem 12.29]. �

Proposition B.3. Given a complex line bundleLwith a Riemannian base manifoldM, the
semigroup generated by the self-adjoint Bochner–Laplacian−,L as defined in(21) has
a Schwartz kernel{pLt (x, y) : Ly → Lx}t>0;x,y∈M that is smooth in the parameterst, x
andy.

Proof. As a first step, we establish properties of point-evaluation functionals on Sobolev-
type spaces of sections inL.

A sectionσ = σjsj with compact support in the domain of a chartφj : Uj → Vj ⊂ R
d

can be identified withσj ◦ φ−1
j , and because of its compact support canonically extends by

zero on the remaining part ofR
d . Due to the smoothness and non-degeneracy of the metric,

its eigenvalues obtain a maximum and a non-zero minimum on the support ofσ. Therefore,
,L acts locally as a uniformly elliptic operator and allows estimating(σ, (1−,L)σ) from
above and below by multiples of the Sobolev-norm of the functionσj inW1,2(Rd). By an
inductive procedure, the same technique gives estimates for(σ, (1− ,L)νσ) in terms of
norms inWν,2(Rd). From now on, we refer to the Sobolev-type space of sectionsψ having
the finite norm|‖ψ‖| := ‖(1−,L)ν/2ψ‖ asWν,2L (M).

In analogy to the Sobolev spaces onR
d , the linear functionalϑu : ψ �→ hx(u,ψ(x))

evaluating sections atx = π(u) is for sufficiently largeν bounded inWν,2L (M). At first, the
bound is only valid on the closed subspace of sectionsσ with support in a sufficiently small
compact setC containingx. However, the sections in the orthogonal complement of the
subspace vanish onC and thus the bound ofϑu passes unchanged to the whole ofWν,2L (M)
[62]. By a similar localization argument and the preceding lemma,u �→ ϑu is seen to be
smooth, and so are all the sectionsψ inWν,2L (M).

The next step of the proof makes use of these smoothness properties to construct the heat
kernel.
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In the spectral representation we see that for fixedν ∈ N and t0 > 0, the operators
(1−,L)ν/2 et,

L
are uniformly int ≥ t0 bounded onL2(hm). In consequence, the semigroup

et,
L

is bounded as a mapping fromL2(hm) into all Sobolev-type spacesWν,2(M), and
choosing a sufficiently largeν proves that the functionalψ �→ ϑu(et,

L
ψ) is bounded and

linear inψ ∈ L2(hm). By the Riesz representation theorem and due to the linearity of
u �→ ϑu in the fibers, there is a vectorqt(·, π(u))u in L2(hm) such thatϑu(et,

L
ψ) =

(qt(·, π(u))u, ψ) for all ψ ∈ L2(hm). By the smoothness ofu �→ (qt(·, π(u))u, ψ) and a
uniform-boundedness argument, the mapu �→ qt(·, π(u))u is smooth in the strong sense.

In addition, the mapt �→ qt(·, π(u))u is also smooth, because(1−,L)m/2 et,
L

is real
analytic int > 0. In the last step, we define a smooth kernelpLt (x, y) by

hx(u, p
L
t (π(u), π(v))v) := (qt/2(·, π(u))u, qt/2(·, π(v))v), (B.2)

and claim that it is a Schwartz kernel for et,
L
. Using the definition(B.2), the equation∫

M×M
hx(ψ(x), pt(x, y)σ(y))dm(x)dm(y) = (et,L/2ψ,et,L/2σ) (B.3)

follows for sectionsψ, σ ∈ C∞cL(M). The self-adjointness and boundedness of et,L/2 then
completes the proof. �

Appendix C. A version of the Feynman–Kac formula for perturbations of the
Bochner–Laplacian

This appendix is concerned with a proof of formula(62). The strategy followed here is a
combination of ideas as presented by Simon[63, Chapter V], Bismut[64, Chapter IX], and
Wittich [58]. The core portion of the proof is a version of Itô’s formula for sections in line
bundles, which will be derived first. The remaining part is an approximation argument.

We will use the same notation as in the main text, soL is a Hermitian line bundle
with a connection∇ and an associated metric-preserving horizontal transportH . The
d-dimensional base manifoldM is complete with respect to the topology induced by a Rie-
mannian metric. As usual, the Brownian motion inMwith the diffusion constantD > 0 and
the starting pointx is denoted byB, and the underlying probability measure byP

D
x . More-

over,M is assumed to be Brownian complete and its Ricci curvature bounded from below.
The Bochner–Laplacian is denoted by,L. An additive perturbation to−D,L by a

functionq as discussed inDefinition 27results in the Schrödinger operatorSLD,q. At first,
we focus on the unperturbed case.

Lemma C.1. Given a smooth sectionψ in L, then fort ≥ 0

H−1
B,t ψ(Bt) = ψ(B0)+

d∑
k=1

∫ t

0
H−1

B,r∇Ekψ(Br)〈EIk, �B〉r (C.1)

relates the horizontal transport and the connection in a Stratonovich-integral equation. As
usual, the right-hand side is invariant with respect to the particular choice of the section



B.G. Bodmann / Journal of Geometry and Physics 47 (2003) 128–160 155

{Ek}dk=1 in a local orthonormal frame bundle. The brackets〈·, ·〉 denote a dual pairing,
here with the one-formEIk = g(Ek, ·).

Proof. By localization[51], it suffices to check this on a stochastic interval [[0, τ]], where
τ is the exit time ofB from the chart domainUj containing the starting pointB0. The proof
is accomplished using a local formulation of horizontal transport. To this end, we select
a local trivializationξj and reference sectionsj around theB0 and associate with each
sectionψ the representing functionψj satisfyingψ|Uj = ψjsj. The so-called connection
one-form determined by∇ has a local representativeαj that satisfies∇X(ψjsj) = (X(ψj)−
iαj(X)ψj)sj for all smoothψ and vector fieldsX ∈ Υ(M).

To simplify the notation, we define semimartingalesY andZ on [[0, τ]] by

Yt := ψj(Bt) and Zt := e−i
∫ t

0〈αj,δB〉, (C.2)

and use the shorthand�Wk = 〈EIk, δB〉, which represents the components of a Brownian
motionW in R

d that is restricted to the stochastic interval. In conjunction with Stratonovich
stochastic integrals, an integration by parts rule applies,

ZtYt − Y0 =
∫ t

0
ZrδYr +

∫ t

0
YrδZr, (C.3)

ZtYt − Y0 =
d∑
k=1

∫ t

0
ZrEk(ψj)(Br) �Wk

r − i
d∑
k=1

∫ t

0
ZrYrαj(Ek)(Br)δWk

r , (C.4)

ZtYt − Y0 =
d∑
k=1

∫ t

0
Zr(Ek(ψj)− iαj(Ek)ψj)(Br) �Wk

r , (C.5)

and after reinserting the definitions ofY andZ, we obtain an identity which, together with
the localized expression for reverse horizontal transport, shows that both sides ofEq. (C.1)
are the same scalars multiplyingsj(B0). �

Proposition C.2. With the same notation as in the preceding lemma, a version of the Itˆo’s
formula in fiber bundles is expressed as

H−1
B,tψ(Bt) = ψ(B0)+

d∑
k=1

∫ t

0
H−1

B,r∇Ekψ(Br)dW(k)
r +

∫ t

0
H−1

B,rD,
Lψ(Br)dr.

(C.6)

Proof. As the first step of the proof, we repeat the calculation in the preceding lemma, with
Yt replaced byYkt := (Ek(ψj)− iαj(Ek)ψj)(Bt), which yields

ZtYkt − Yk0 =
d∑
l=1

∫ t

0
Zr(El(Ek(ψj))− (Covl Ek)ψj − iEl(αj(Ek))

−iαj(Covl Ek)− iαj(El)(Ek(ψj)− iαj(Ek)ψj))(Br) �Wl
r. (C.7)
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The covariant derivative of the frame vectors enters because those are not horizontally
transported alongB.

Now we convertEqs. (C.5) and (C.7)to Itô differentials and insert the stochastic integral
expression forZYk into the cross variation emerging fromEq. (C.5)

ZtYt − Y0 =
d∑
k=1

∫ t

0
ZrYkr �Wk + 1

2

d∑
k=1

[ZYk,Wk]t , (C.8)

ZtYt − Y0 =
d∑
k=1

∫
ZrYkr dWk + 1

2

d∑
k,l=1

∫ t

0
Zr(El(Ek(ψj))

−(Covl Ek)ψj − iEl(αj(Ek))

−iαj(Covl Ek))(Br)− iαj(El)Ykr )d[Wl,Wk
r ]. (C.9)

After contracting the summation indices with the cross variation [Wl,Wk]r = 2Dδlkr, a
similar identification as in the preceding lemma and the differential operator expression
obtained for,L proves formula(C.6). �

Consequence C.3.If ψ ∈ L2(hm) andE
D
x [•] denotes the expectation with respect to the

Brownian motion starting atx ∈M, then fort ≥ 0 the semigroup generated byD,L can
be represented as

etD,Lψ(x) = E
D
x [H−1

B,t ψ(Bt)]. (C.10)

Proof. First, we assumeψ ∈ C∞cL(M) and abbreviate the expectation valuePLD,tψ(x) :=
Ex(H

−1
B,t ψ(Bt)]. SinceH−1

B,t preserves the Hermitian metrich, eachPLD,t is seen to be a
bounded operator. Moreover, by the time reversal invariance of Brownian motion it is
self-adjoint. Finally, the family{PLD,t}t≥0 forms a semigroup due to the Markov property

PLD,t+sψ(x) = E
D
x [H−1

B,t+sψ(Bt+s)], (C.11)

PLD,t+sψ(x) = E
D
x [H−1

B,tE
D
Bt [H

−1
B,sψ(Bs)]] = PLD,t(PLD,sψ)(x) (C.12)

valid for s, t ≥ 0. To verify that both sides of(C.10)are identical, we note that the generators
agree onψ ∈ C∞cL(M), becausePLD,tψ satisfies the same integral equation as etD,Lψ,

PLD,tψ(x) = E
D
x [H−1

B,t ψ(Bt)], (C.13)

PLD,tψ(x) = E
D
x

[
ψ(B0)+

∫ t

0
H−1

B,sD,
Lψ(Bs)ds

]
, (C.14)

PLD,tψ(x) = ψ(x)+
∫ t

0
PLD,sD,

Lψ(x)ds. (C.15)

By the definition ofPLD,t , the semigroup can be defined on allψ ∈ L2(hm). Therefore,

its generator defines a self-adjoint extension ofD,L|C∞
cL(M)

, but this is necessarilyD,L,
because the latter is essentially self-adjoint onC∞cL(M). �
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Theorem C.4. If the assumptions listed at the beginning of this appendix are satisfied,ψ ∈
L2(hm), and q ∈ K + ±(PD), then the semigroupe−tSLD,q generated by the Schrödinger
operatorSLD,q has the probabilistic representation

e−tSLD,qψ(x) = E
D
x [e−

∫ t
0 q(Bs)dsH−1

B,t ψ(Bt)], (C.16)

valid form-almost everyx ∈M.

Proof. First, we supposeq is continuous,ψ is a smooth section, and both are bounded.
Then, along the lines of(C.6)and with the integration by parts rule,

e−
∫ t

0 q(Bs)dsH−1
B,t ψ(Bt) = ψ(B0)+

d∑
k=1

∫ t

0
e−

∫ r
0 q(Bs)dsH−1

B,r∇Ekψ(Br)dWk
r

+
∫ t

0
e−

∫ r
0 q(Bs)dsH−1

B,r(D,
Lψ − qψ)(Br)dr. (C.17)

Sinceq is bounded, the modification of the heat semigroup defined by inserting(C.17)in the
expectation value of(C.10)has as its generator a self-adjoint extension of(D,L−q)|C∞

cL(M)
.

Again, by essential self-adjointness, this is seen to be the difference−SLD,q = D,L − q.
In the last step, we approximate the general caseq ∈ K±(PD) by truncation. We define

the net{qlk} of bounded functions

x �→ qlk(x) := min{max{q(x),−k}, l} (C.18)

indexed byk, l ∈ N. Truncatingq ∈ K±(PD) in this manner gives

e
−tSL

D,ql
k ψ(x) = E

D
x [e−

∫ t
0 q
l
k
(Bs)dsH−1

B,t ψ(Bt)] (C.19)

valid form-almost everyx by the above argument. Now, by monotone form convergence
we obtain strong convergence on the left when consecutively firstl→∞ and thenk→∞,
whereas on the right dominated convergence applies to both limits, because

E
D
x [e

∫ t
0 q
−(Bs)dshBt (ψ(Bt), ψ(Bt))] <∞ (C.20)

since the negative partq− ∈ K(PD) andx �→ hx(ψ(x), ψ(x)) arem-integrable. �
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